Suppr超能文献

基于术前评估的腹部和盆部转移灶以及多参数 MRI 构建高级别浆液性卵巢癌大体残留预测模型的研究

Development of a prediction model for gross residual in high-grade serous ovarian cancer by combining preoperative assessments of abdominal and pelvic metastases and multiparametric MRI.

机构信息

Department of Radiology, Zhongshan Hospital, Fudan University, No.180 Fenglin Rd, Shanghai 200032, China; Shanghai Institute of Medical Imaging.

Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd. Shanghai, 200232, China.

出版信息

Acad Radiol. 2023 Sep;30(9):1823-1831. doi: 10.1016/j.acra.2022.12.019. Epub 2022 Dec 31.

Abstract

RATIONALE AND OBJECTIVES

To preoperatively predict residual tumor (RT) in patients with high-grade serous ovarian carcinoma (HGSOC) via a radiomic-clinical nomogram.

METHODS

A total of 128 patients with advanced HGSOC were enrolled (training cohort: n=106; validation cohort: n=22). Serum cancer antigen-125 (CA125), serum human epididymis protein 4 (HE-4) level, and neutrophil-to-lymphocyte ratio (NLR) were obtained from the medical records. Metastases in abdomen and pelvis (MAP) of HGSOC patients was evaluated and scored based on preoperative abdominal and pelvic enhanced CT, MRI and/or PET-CT. A volume of interest (VOI) of each tumor was manually contoured along the boundary slice-by-slice. Radiomic features were extracted from the T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) images. Univariate and multivariate analyses were used to determine the independent predictors of RT status. Least absolute shrinkage and selection operator (LASSO) logistic regression was performed to select optimal features and construct radiomic models. A radiomic-clinical nomogram incorporating radiomic signature and clinical parameters was developed and evaluated in training and validation cohorts.

RESULTS

MAP score (p = 0.002), HE-4 level (p = 0.001) and NLR (p = 0.008) were independent predictors of RT status. The final radiomic-clinical nomogram showed satisfactory prediction performance in training (AUC = 0.936), cross validation (AUC = 0.906) and separate validation cohorts (AUC = 0.900), and fitted well in calibration curves (p > 0.05). Decision curve further confirmed the clinical application value of the nomogram.

CONCLUSION

The proposed MRI-based radiomic-clinical nomogram achieved excellent preoperative prediction of the RT status in HGSOC.

摘要

背景与目的

通过构建基于影像组学和临床的列线图模型,术前预测高级别浆液性卵巢癌(HGSOC)患者的肿瘤残留(RT)。

方法

本研究纳入了 128 例晚期 HGSOC 患者(训练队列:n=106;验证队列:n=22)。从病历中获取血清肿瘤标志物 CA125、HE-4 水平和中性粒细胞与淋巴细胞比值(NLR)。根据术前腹部和盆腔增强 CT、MRI 和/或 PET-CT 评估和评分 HGSOC 患者的转移情况(MAP)。手动逐层勾画每个肿瘤的感兴趣区域(VOI)。从 T2 加权成像(T2WI)、弥散加权成像(DWI)和表观弥散系数(ADC)图像中提取影像组学特征。采用单因素和多因素分析确定 RT 状态的独立预测因素。采用最小绝对值收缩和选择算子(LASSO)逻辑回归选择最佳特征并构建影像组学模型。构建纳入影像组学特征和临床参数的影像组学-临床列线图,并在训练和验证队列中进行评估。

结果

MAP 评分(p=0.002)、HE-4 水平(p=0.001)和 NLR(p=0.008)是 RT 状态的独立预测因素。最终的影像组学-临床列线图在训练队列(AUC=0.936)、交叉验证队列(AUC=0.906)和独立验证队列(AUC=0.900)中均表现出良好的预测性能,且校准曲线拟合良好(p>0.05)。决策曲线进一步证实了该列线图的临床应用价值。

结论

本研究提出的基于 MRI 的影像组学-临床列线图可在术前准确预测 HGSOC 患者的 RT 状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验