文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于先进等离子体纳米颗粒的技术用于当前新型冠状病毒肺炎的预防、检测和治疗

Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19.

作者信息

Yakoubi Afef, Dhafer Cyrine El Baher

机构信息

Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia.

Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia.

出版信息

Plasmonics. 2023;18(1):311-347. doi: 10.1007/s11468-022-01754-0. Epub 2022 Dec 23.


DOI:10.1007/s11468-022-01754-0
PMID:36588744
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9786532/
Abstract

Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.

摘要

冠状病毒病是由严重急性呼吸综合征冠状病毒2引起的一场持续的全球大流行。2019冠状病毒病(COVID-19)是二战以来最严重的大流行。COVID-19的爆发对健康、经济、政治和环境产生了重大影响,使冠状病毒相关问题更加复杂,并成为上世纪最具挑战性的大流行之一,导致了致命后果和高繁殖数。全球有数千种不同类型——即变体——的COVID在传播。病毒一直在变异;这凸显了设计有效疫苗以预防病毒感染、早期快速诊断以及有效的抗病毒和保护性治疗方法的迫切需求。在这方面,纳米技术的应用为开发针对COVID-19的预防、诊断和治疗新策略提供了新机遇。本综述概述了利用等离子体纳米颗粒开发的用于检测、治疗和预防严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的平台。我们在这些方法中各自选择了最佳策略。强调了金属等离子体纳米颗粒的特性及其在开发针对COVID-19的新型即时诊断方法中的相关性。此外,我们讨论了当前的挑战以及纳米技术和基于等离子体纳米颗粒的诊断工具及疗法用于抗击COVID-19大流行的临床转化和商业方面的未来前景。这篇文章对于致力于为COVID-19病毒及未来大流行开发合适的等离子体检测工具和治疗方法的研究人员可能具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/45f459dbeb9a/11468_2022_1754_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/c8d2bd0efbbd/11468_2022_1754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/5831ec8ef0a6/11468_2022_1754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/3de75a06d552/11468_2022_1754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/eac68cad229b/11468_2022_1754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/86eacb2beb31/11468_2022_1754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/839187be752f/11468_2022_1754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/f2d2357fc6d7/11468_2022_1754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/b00f94c2ec29/11468_2022_1754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/dd2be044350c/11468_2022_1754_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/355fa0ca60ce/11468_2022_1754_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/18418af59bd0/11468_2022_1754_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/9af1d58e11e9/11468_2022_1754_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/ed1ddefc9b3f/11468_2022_1754_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/2e2513c6f72d/11468_2022_1754_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/3bcc0f820519/11468_2022_1754_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/c7c2234139c0/11468_2022_1754_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/45f459dbeb9a/11468_2022_1754_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/c8d2bd0efbbd/11468_2022_1754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/5831ec8ef0a6/11468_2022_1754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/3de75a06d552/11468_2022_1754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/eac68cad229b/11468_2022_1754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/86eacb2beb31/11468_2022_1754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/839187be752f/11468_2022_1754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/f2d2357fc6d7/11468_2022_1754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/b00f94c2ec29/11468_2022_1754_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/dd2be044350c/11468_2022_1754_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/355fa0ca60ce/11468_2022_1754_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/18418af59bd0/11468_2022_1754_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/9af1d58e11e9/11468_2022_1754_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/ed1ddefc9b3f/11468_2022_1754_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/2e2513c6f72d/11468_2022_1754_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/3bcc0f820519/11468_2022_1754_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/c7c2234139c0/11468_2022_1754_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c41/9786532/45f459dbeb9a/11468_2022_1754_Fig17_HTML.jpg

相似文献

[1]
Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19.

Plasmonics. 2023

[2]
The role of nanotechnology in current COVID-19 outbreak.

Heliyon. 2021-4

[3]
Bioconjugated Nanomaterial for Targeted Diagnosis of SARS-CoV-2.

Acc Mater Res. 2022-1-12

[4]
Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic.

ACS Nano. 2020-6-10

[5]
How can nanotechnology help to combat COVID-19? Opportunities and urgent need.

J Nanobiotechnology. 2020-9-5

[6]
Nanotechnology-based promising strategies for the management of COVID-19: current development and constraints.

Expert Rev Anti Infect Ther. 2022-10

[7]
SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies.

Int Rev Immunol. 2023

[8]
[Diagnosis, treatment, control and prevention of SARS-CoV-2 and coronavirus disease 2019: back to the future].

Sheng Wu Gong Cheng Xue Bao. 2020-4-25

[9]
Monoclonal Antibody Therapy For High-Risk Coronavirus (COVID 19) Patients With Mild To Moderate Disease Presentations (Archived)

2025-1

[10]
Nanotechnology-Based Strategies for the Management of COVID-19: Recent Developments and Challenges.

Curr Pharm Des. 2021

引用本文的文献

[1]
Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications.

Pharmaceutics. 2024-8-23

[2]
From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications.

Discov Nano. 2024-5-9

[3]
Nanoplasmonic biosensors for precision medicine.

Front Chem. 2023-7-6

[4]
Validation of Rapid and Economic Colorimetric Nanoparticle Assay for SARS-CoV-2 RNA Detection in Saliva and Nasopharyngeal Swabs.

Biosensors (Basel). 2023-2-15

本文引用的文献

[1]
Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces.

J Therm Spray Technol. 2021

[2]
Label-Free Electrochemical Detection of DNA Hybridization: A Method for COVID-19 Diagnosis.

Trans Indian Natl Acad Eng. 2020

[3]
A review on plasmonic and metamaterial based biosensing platforms for virus detection.

Sens Biosensing Res. 2021-8

[4]
Cloth Face Masks Containing Silver: Evaluating the Status.

J Chem Health Saf. 2021-4-16

[5]
SARS-COV-2 Variants: Differences and Potential of Immune Evasion.

Front Cell Infect Microbiol. 2021

[6]
Antiviral Activity of Graphene Oxide-Silver Nanocomposites by Preventing Viral Entry and Activation of the Antiviral Innate Immune Response.

ACS Appl Bio Mater. 2018-11-19

[7]
Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction.

BMC Mol Cell Biol. 2022-1-7

[8]
Sequence analysis of the emerging SARS-CoV-2 variant Omicron in South Africa.

J Med Virol. 2022-4

[9]
Omicron variant genome evolution and phylogenetics.

J Med Virol. 2022-4

[10]
Biosensors as Nano-Analytical Tools for COVID-19 Detection.

Sensors (Basel). 2021-11-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索