Rastegar Homayoun, Giveki Davar, Choubin Morteza
Department of Computer Engineering, Malayer University, P. O. Box 65719-95863, Malayer, Iran.
Department of Electrical Engineering, Malayer University, P. O. Box 65719-95863, Malayer, Iran.
Evol Intell. 2022 Dec 24:1-12. doi: 10.1007/s12065-022-00802-2.
The purpose of this paper is to investigate a new method for EEG signals classification. A powerful method for detecting these signals can greatly contribute to areas such as making robotic arms for disabled people, mind reading and lie detection tools. To this end, this study makes two interesting contributions. As a major contribution, a new classifier based on a radial basis function neural network (RBFNN) is presented. As the center determination method of a RBFNN classifier has a high impact on the final classification results, we have adopted Jellyfish search (JS) algorithm for choosing the centers of the Gaussian functions in the hidden layer of the RBFNN classifier. Additionally, Locally Linear Embedding (LLE) technique is investigated for reducing the dimensionality of EEG signals. Two series of various experiments are designed to validate our proposals. In the first set of the experiments, the proposed RBFNN classifier is compared with other state-of-the-art RBFNN classifiers. In the second set of the experiments, the performances of the proposed EEG signals classifications are evaluated on a challenging dataset for EEG signals classification. The experimental results demonstrate the superiority of our proposed method even compared to the methods based on the convolutional neural networks.
The online version contains supplementary material available at 10.1007/s12065-022-00802-2.
本文的目的是研究一种用于脑电信号分类的新方法。一种强大的检测这些信号的方法可以极大地促进诸如为残疾人制造机械臂、读心术和测谎工具等领域的发展。为此,本研究做出了两项有趣的贡献。作为主要贡献,提出了一种基于径向基函数神经网络(RBFNN)的新分类器。由于RBFNN分类器的中心确定方法对最终分类结果有很大影响,我们采用水母搜索(JS)算法来选择RBFNN分类器隐藏层中高斯函数的中心。此外,研究了局部线性嵌入(LLE)技术以降低脑电信号的维度。设计了两组不同的实验来验证我们的提议。在第一组实验中,将所提出的RBFNN分类器与其他现有最先进的RBFNN分类器进行比较。在第二组实验中,在所提出的脑电信号分类方法在一个具有挑战性的脑电信号分类数据集上评估其性能。实验结果表明,即使与基于卷积神经网络的方法相比,我们所提出的方法也具有优越性。
在线版本包含可在10.1007/s12065-022-00802-2获取的补充材料。