Suppr超能文献

基于脑电图的两级学习层次径向基函数驾驶疲劳检测

EEG-Based Driving Fatigue Detection Using a Two-Level Learning Hierarchy Radial Basis Function.

作者信息

Ren Ziwu, Li Rihui, Chen Bin, Zhang Hongmiao, Ma Yuliang, Wang Chushan, Lin Ying, Zhang Yingchun

机构信息

Robotics and Microsystems Center, Soochow University, Suzhou, China.

Department of Biomedical Engineering, University of Houston, Houston, TX, United States.

出版信息

Front Neurorobot. 2021 Feb 11;15:618408. doi: 10.3389/fnbot.2021.618408. eCollection 2021.

Abstract

Electroencephalography (EEG)-based driving fatigue detection has gained increasing attention recently due to the non-invasive, low-cost, and potable nature of the EEG technology, but it is still challenging to extract informative features from noisy EEG signals for driving fatigue detection. Radial basis function (RBF) neural network has drawn lots of attention as a promising classifier due to its linear-in-the-parameters network structure, strong non-linear approximation ability, and desired generalization property. The RBF network performance heavily relies on network parameters such as the number of the hidden nodes, number of the center vectors, width, and output weights. However, global optimization methods that directly optimize all the network parameters often result in high evaluation cost and slow convergence. To enhance the accuracy and efficiency of EEG-based driving fatigue detection model, this study aims to develop a two-level learning hierarchy RBF network (RBF-TLLH) which allows for global optimization of the key network parameters. Experimental EEG data were collected, at both fatigue and alert states, from six healthy participants in a simulated driving environment. Principal component analysis was first utilized to extract features from EEG signals, and the proposed RBF-TLLH was then employed for driving status (fatigue . alert) classification. The results demonstrated that the proposed RBF-TLLH approach achieved a better classification performance (mean accuracy: 92.71%; area under the receiver operating curve: 0.9199) compared to other widely used artificial neural networks. Moreover, only three core parameters need to be determined using the training datasets in the proposed RBF-TLLH classifier, which increases its reliability and applicability. The findings demonstrate that the proposed RBF-TLLH approach can be used as a promising framework for reliable EEG-based driving fatigue detection.

摘要

基于脑电图(EEG)的驾驶疲劳检测由于EEG技术具有非侵入性、低成本和便携性等特点,近年来受到了越来越多的关注。但是,从嘈杂的EEG信号中提取用于驾驶疲劳检测的信息特征仍然具有挑战性。径向基函数(RBF)神经网络因其参数线性的网络结构、强大的非线性逼近能力和良好的泛化性能,作为一种有前途的分类器受到了广泛关注。RBF网络的性能在很大程度上依赖于网络参数,如隐藏节点数量、中心向量数量、宽度和输出权重等。然而,直接优化所有网络参数的全局优化方法往往会导致评估成本高和收敛速度慢。为了提高基于EEG的驾驶疲劳检测模型的准确性和效率,本研究旨在开发一种两级学习层次结构的RBF网络(RBF-TLLH),该网络允许对关键网络参数进行全局优化。在模拟驾驶环境中,从6名健康参与者身上采集了疲劳和警觉状态下的实验EEG数据。首先利用主成分分析从EEG信号中提取特征,然后将所提出的RBF-TLLH用于驾驶状态(疲劳.警觉)分类。结果表明,与其他广泛使用的人工神经网络相比,所提出的RBF-TLLH方法具有更好的分类性能(平均准确率:92.71%;受试者工作特征曲线下面积:0.9199)。此外,在所提出的RBF-TLLH分类器中,只需要使用训练数据集确定三个核心参数,这提高了其可靠性和适用性。研究结果表明,所提出的RBF-TLLH方法可以作为一个有前途的框架,用于基于EEG的可靠驾驶疲劳检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b973/7905350/9b71a53e9bfe/fnbot-15-618408-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验