Suppr超能文献

EXT1-2 复合物催化肝素硫酸共聚物形成的结构基础。

Structural basis for heparan sulfate co-polymerase action by the EXT1-2 complex.

机构信息

Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.

Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.

出版信息

Nat Chem Biol. 2023 May;19(5):565-574. doi: 10.1038/s41589-022-01220-2. Epub 2023 Jan 2.

Abstract

Heparan sulfate (HS) proteoglycans are extended (-GlcAβ1,4GlcNAcα1,4-) co-polymers containing decorations of sulfation and epimerization that are linked to cell surface and extracellular matrix proteins. In mammals, HS repeat units are extended by an obligate heterocomplex of two exostosin family members, EXT1 and EXT2, where each protein monomer contains distinct GT47 (GT-B fold) and GT64 (GT-A fold) glycosyltransferase domains. In this study, we generated human EXT1-EXT2 (EXT1-2) as a functional heterocomplex and determined its structure in the presence of bound donor and acceptor substrates. Structural data and enzyme activity of catalytic site mutants demonstrate that only two of the four glycosyltransferase domains are major contributors to co-polymer syntheses: the EXT1 GT-B fold β1,4GlcA transferase domain and the EXT2 GT-A fold α1,4GlcNAc transferase domain. The two catalytic sites are over 90 Å apart, indicating that HS is synthesized by a dissociative process that involves a single catalytic site on each monomer.

摘要

硫酸乙酰肝素(HS)蛋白聚糖是一种延伸的(-GlcAβ1,4GlcNAcα1,4-)共聚物,其中包含硫酸化和差向异构化的修饰,与细胞膜表面和细胞外基质蛋白相连。在哺乳动物中,HS 重复单元由两个外切糖苷酶家族成员 EXT1 和 EXT2 的必需异源复合物延伸,其中每个蛋白单体都包含独特的 GT47(GT-B 折叠)和 GT64(GT-A 折叠)糖基转移酶结构域。在这项研究中,我们生成了人 EXT1-EXT2(EXT1-2)作为一种功能性异源复合物,并在结合供体和受体底物的情况下确定了其结构。结构数据和催化位点突变体的酶活性表明,只有四个糖基转移酶结构域中的两个是共聚物合成的主要贡献者:EXT1 GT-B 折叠β1,4GlcA 转移酶结构域和 EXT2 GT-A 折叠α1,4GlcNAc 转移酶结构域。这两个催化位点之间的距离超过 90Å,表明 HS 是通过一个解联过程合成的,每个单体上都有一个单独的催化位点。

相似文献

1
Structural basis for heparan sulfate co-polymerase action by the EXT1-2 complex.
Nat Chem Biol. 2023 May;19(5):565-574. doi: 10.1038/s41589-022-01220-2. Epub 2023 Jan 2.
2
Structure of the human heparan sulfate polymerase complex EXT1-EXT2.
Nat Commun. 2022 Nov 19;13(1):7110. doi: 10.1038/s41467-022-34882-6.
3
Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation.
J Biol Chem. 2007 Nov 9;282(45):32802-10. doi: 10.1074/jbc.M703560200. Epub 2007 Aug 29.
4
In vitro polymerization of heparan sulfate backbone by the EXT proteins.
J Biol Chem. 2003 Oct 17;278(42):41333-7. doi: 10.1074/jbc.M308314200. Epub 2003 Aug 7.
5
Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4751-6. doi: 10.1073/pnas.0705807105. Epub 2008 Mar 12.
6
Biosynthesis of heparan sulfate in EXT1-deficient cells.
Biochem J. 2010 May 27;428(3):463-71. doi: 10.1042/BJ20100101.

引用本文的文献

3
The Missing Piece of the Puzzle: Unveiling the Role of Gene in Multiple Osteochondromas in a Large Cohort Study.
Hum Mutat. 2024 Feb 12;2024:8849348. doi: 10.1155/2024/8849348. eCollection 2024.
5
Structural and Functional Analysis of Heparosan Synthase 2 from (PmHS2) to Improve the Synthesis of Heparin.
ACS Catal. 2024 May 3;14(9):6577-6588. doi: 10.1021/acscatal.4c00677. Epub 2024 Apr 15.
6
Structural glycobiology - from enzymes to organelles.
Biochem Soc Trans. 2025 Jan 31;53(1):83-100. doi: 10.1042/BST20241119.
9
Global impact of proteoglycan science on human diseases.
iScience. 2023 Oct 4;26(11):108095. doi: 10.1016/j.isci.2023.108095. eCollection 2023 Nov 17.
10
Molecular mechanism of decision-making in glycosaminoglycan biosynthesis.
Nat Commun. 2023 Oct 13;14(1):6425. doi: 10.1038/s41467-023-42236-z.

本文引用的文献

1
Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase.
PLoS One. 2022 Dec 13;17(12):e0278713. doi: 10.1371/journal.pone.0278713. eCollection 2022.
3
Structure, substrate recognition and initiation of hyaluronan synthase.
Nature. 2022 Apr;604(7904):195-201. doi: 10.1038/s41586-022-04534-2. Epub 2022 Mar 30.
4
Hereditary Multiple Exostoses-A Review of the Molecular Background, Diagnostics, and Potential Therapeutic Strategies.
Front Genet. 2021 Dec 10;12:759129. doi: 10.3389/fgene.2021.759129. eCollection 2021.
5
The carbohydrate-active enzyme database: functions and literature.
Nucleic Acids Res. 2022 Jan 7;50(D1):D571-D577. doi: 10.1093/nar/gkab1045.
6
The LOVD3 platform: efficient genome-wide sharing of genetic variants.
Eur J Hum Genet. 2021 Dec;29(12):1796-1803. doi: 10.1038/s41431-021-00959-x. Epub 2021 Sep 15.
8
Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877. doi: 10.1107/S2059798319011471. Epub 2019 Oct 2.
9
Emerging structural insights into glycosyltransferase-mediated synthesis of glycans.
Nat Chem Biol. 2019 Sep;15(9):853-864. doi: 10.1038/s41589-019-0350-2. Epub 2019 Aug 19.
10
The PSIPRED Protein Analysis Workbench: 20 years on.
Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407. doi: 10.1093/nar/gkz297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验