Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
ACS Appl Mater Interfaces. 2023 Jan 11;15(1):1442-1451. doi: 10.1021/acsami.2c20268. Epub 2023 Jan 3.
Lithium nickel oxide (LiNiO) is a promising next-generation cathode material for lithium-ion batteries (LIBs), offering exceptionally high specific capacity and reduced material cost. However, the poor structural, surface, and electrochemical stabilities of LiNiO result in rapid loss of capacity during prolonged cycling, making it unsuitable for application in commercial LIBs. Herein, we demonstrate that incorporation of a small amount of niobium effectively suppresses the structural and surface degradation of LiNiO. The niobium-treated LiNiO retains 82% of its initial capacity after 500 cycles in full cells with a graphite anode compared to 73% for untreated LiNiO. We utilize a facile method for incorporating niobium, which yields LiNbO phase formation as a surface coating on the primary particles. Through a combination of X-ray diffraction, electron microscopy, and electrochemical analyses, we show that the resulting niobium coating reduces active material loss over long-term cycling and enhances lithium-ion diffusion kinetics. The enhanced structural integrity and electrochemical performance of the niobium-treated LiNiO are correlated to a reduction in the formation of nanopore defects during cycling compared to the untreated LiNiO.
氧化镍锂(LiNiO)是一种很有前途的下一代锂离子电池(LIB)正极材料,具有极高的比容量和较低的材料成本。然而,LiNiO 较差的结构稳定性、表面稳定性和电化学稳定性导致其在长期循环过程中容量迅速衰减,因此不适合应用于商业 LIB。在此,我们证明了少量铌的掺入可以有效地抑制 LiNiO 的结构和表面退化。与未经处理的 LiNiO 相比,经铌处理的 LiNiO 在全电池中与石墨阳极循环 500 次后,仍保留了 82%的初始容量,而未经处理的 LiNiO 仅保留了 73%的初始容量。我们采用了一种简便的方法将铌掺入其中,从而在初级颗粒的表面形成 LiNbO 相涂层。通过 X 射线衍射、电子显微镜和电化学分析的综合研究,我们表明,这种铌涂层的形成减少了活性材料在长期循环过程中的损失,并提高了锂离子扩散动力学。与未经处理的 LiNiO 相比,处理后的 LiNiO 的结构完整性和电化学性能得到增强,这与循环过程中纳米孔缺陷的形成减少有关。