Mu Linqin, Kan Wang Hay, Kuai Chunguang, Yang Zhijie, Li Luxi, Sun Cheng-Jun, Sainio Sami, Avdeev Maxim, Nordlund Dennis, Lin Feng
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Spallation Neutron Source Science Center, No. 1, Zhongziyuan Road, Dalang, Dongguan 523803, China.
ACS Appl Mater Interfaces. 2020 Mar 18;12(11):12874-12882. doi: 10.1021/acsami.0c00111. Epub 2020 Mar 4.
Doping chemistry has been regarded as an efficient strategy to overcome some fundamental challenges facing the "no-cobalt" LiNiO cathode materials. By utilizing the doping chemistry, we evaluate the battery performance and structural/chemical reversibility of a new no-cobalt cathode material (Mg/Mn-LiNiO). The unique dual dopants drive Mg and Mn to occupy the Li site and Ni site, respectively. The Mg/Mn-LiNiO cathode delivers smooth voltage profiles, enhanced structural stability, elevated self-discharge resistance, and inhibited nickel dissolution. As a result, the Mg/Mn-LiNiO cathode enables improved cycling stability in lithium metal batteries with the conventional carbonate electrolyte: 80% capacity retention after 350 cycles at /3, and 67% capacity retention after 500 cycles at 2 (22 °C). We then take the Mg/Mn-LiNiO as the platform to investigate the local structural and chemical reversibility, where we identify that the irreversibility takes place starting from the very first cycle. The highly reactive surface induces the surface oxygen loss, metal reduction reaching the subsurface, and metal dissolution. Our data demonstrate that the dual dopants can, to some degree, mitigate the irreversibility and improve the cycling stability of LiNiO, but more efforts are needed to eliminate the key challenges of these materials for battery operation in the conventional carbonate electrolyte.
掺杂化学被视为克服“无钴”LiNiO正极材料所面临的一些基本挑战的有效策略。通过利用掺杂化学,我们评估了一种新型无钴正极材料(Mg/Mn-LiNiO)的电池性能以及结构/化学可逆性。独特的双掺杂剂分别促使Mg和Mn占据Li位和Ni位。Mg/Mn-LiNiO正极呈现出平滑的电压曲线、增强的结构稳定性、提高的自放电电阻以及抑制的镍溶解。因此,Mg/Mn-LiNiO正极在使用传统碳酸盐电解质的锂金属电池中实现了改善的循环稳定性:在/3下350次循环后容量保持率为80%,在2(22°C)下500次循环后容量保持率为67%。然后,我们以Mg/Mn-LiNiO为平台研究局部结构和化学可逆性,在此过程中我们发现不可逆性从第一个循环就开始出现。高活性表面会导致表面氧损失、金属还原至次表面以及金属溶解。我们的数据表明,双掺杂剂在一定程度上可以减轻LiNiO的不可逆性并提高其循环稳定性,但仍需要付出更多努力来消除这些材料在传统碳酸盐电解质中用于电池运行时的关键挑战。