Suppr超能文献

单分子抗冻蛋白的纳米显微镜观察揭示,可逆的冰结合足以抑制冰晶重结晶,但不足以抑制热滞。

Nanoscopy of single antifreeze proteins reveals that reversible ice binding is sufficient for ice recrystallization inhibition but not thermal hysteresis.

机构信息

Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven 5612 AP, the Netherlands.

Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612 AP, the Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2212456120. doi: 10.1073/pnas.2212456120. Epub 2023 Jan 3.

Abstract

Antifreeze proteins (AFPs) bind ice to reduce freezing temperatures and arrest ice crystal ripening, making AFPs essential for the survival of many organisms in ice-laden environments and attractive as biocompatible antifreezes in many applications. While their activity was identified over 50 years ago, the physical mechanisms through which they function are still debated because experimental insights at the molecular scale remain elusive. Here, we introduce subzero nanoscopy by the design and incorporation of a freezing stage on a commercial super-resolution setup to resolve the interfacial dynamics of single AFPs with ice crystal surfaces. Using this method, we demonstrate irreversible binding and immobilization (i.e., pinning) of individual proteins to the ice/water interface. Surprisingly, pinning is lost and adsorption becomes reversible when freezing point depression activity, but not ice recrystallization inhibition, is eliminated by a single mutation in the ice-binding site of the AFP. Our results provide direct experimental evidence for the adsorption-inhibition paradigm, pivotal to all theoretical descriptions of freezing point depression activity, but also reveal that reversible binding to ice must be accounted for in an all-inclusive model for AFP activity. These mechanistic insights into the relation between interfacial interactions and activity further our understanding and may serve as leading principles in the future design of highly potent, biocompatible antifreezes with tunable affinity.

摘要

抗冻蛋白(AFPs)与冰结合以降低冰点并阻止冰晶成熟,这使得 AFP 成为许多在富含冰的环境中生存的生物的必需品,并且在许多应用中作为生物相容性抗冻剂很有吸引力。尽管它们的活性在 50 多年前就被发现了,但它们的作用机制仍存在争议,因为在分子尺度上的实验洞察力仍然难以捉摸。在这里,我们通过设计并将一个冷冻台整合到一个商用超分辨率设置中,引入了零下纳米显微镜,以解决单个 AFP 与冰晶表面的界面动力学问题。使用这种方法,我们证明了单个蛋白质与冰/水界面的不可逆结合和固定(即钉扎)。令人惊讶的是,当 AFP 的冰结合位点的单点突变消除了冰点降低活性但没有抑制冰晶再结晶时,钉扎会丢失,吸附会变得可逆。我们的结果为吸附抑制范式提供了直接的实验证据,该范式对所有冰点降低活性的理论描述都至关重要,但也表明,在 AFP 活性的全包容模型中,必须考虑到与冰的可逆结合。这些关于界面相互作用与活性之间关系的机制见解进一步加深了我们的理解,并可能成为未来设计具有可调亲和力的高效、生物相容的抗冻剂的指导原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b528/9926230/8adbe674ba76/pnas.2212456120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验