Department of Biology, Faculty of Science and Literature, Cukurova University, Adana, Turkey.
Theoretical Chemistry Group, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
J Biomol Struct Dyn. 2022;40(23):12760-12771. doi: 10.1080/07391102.2021.1975569. Epub 2021 Sep 8.
Covid-19 is a viral disease caused by the virus SARS-CoV-2 that spread worldwide and caused more than 4.3 million deaths. Moreover, SARS-CoV-2 still continues to evolve, and specifically the E484K, N501Y, and South Africa triple (K417N + E484K + N501Y) spike protein mutants remain as the 'escape' phenotypes. The aim of this study was to compare the interaction between the receptor binding domain (RBD) of the E484K, N501Y and South Africa triple spike variants and ACE2 with the interaction between wild-type spike RBD-ACE2 and to show whether the obtained binding affinities and conformations corraborate clinical findings. The structures of the RBDs of the E484K, N501Y and South Africa triple variants were generated with DS Studio v16 and energetically minimized using the CHARMM22 force field. Protein-protein dockings were performed in the HADDOCK server and the obtained wild-type and mutant spike-ACE2 complexes were submitted to 200-ns molecular dynamics simulations with subsequent free energy calculations using GROMACS. Based on docking binding affinities and free energy calculations the E484K, N501Y and triple mutant variants were found to interact stronger with the ACE2 than the wild-type spike. Interestingly, molecular dynamics and MM-PBSA results showed that E484K and spike triple mutant complexes were more stable than the N501Y one. Moreover, the E484K and South Africa triple mutants triggered greater conformational changes in the spike glycoprotein than N501Y. The E484K variant alone, or the combination of K417N + E484K + N501Y mutations induce significant conformational transitions in the spike glycoprotein, while increasing the spike-ACE2 binding affinity.Communicated by Ramaswamy H. Sarma.
Covid-19 是一种由病毒 SARS-CoV-2 引起的病毒性疾病,该病毒在全球范围内传播,导致超过 430 万人死亡。此外,SARS-CoV-2 仍在继续进化,特别是 E484K、N501Y 和南非三重(K417N+E484K+N501Y)刺突蛋白突变体仍然是“逃逸”表型。本研究旨在比较 E484K、N501Y 和南非三重刺突变体的受体结合域(RBD)与 ACE2 的相互作用与野生型刺突 RBD-ACE2 的相互作用,并表明获得的结合亲和力和构象是否与临床发现相符。使用 DS Studio v16 生成 E484K、N501Y 和南非三重变体的 RBD 结构,并使用 CHARMM22 力场对其进行能量最小化。在 HADDOCK 服务器中进行蛋白-蛋白对接,并将获得的野生型和突变型刺突-ACE2 复合物提交给 200-ns 分子动力学模拟,随后使用 GROMACS 进行自由能计算。基于对接结合亲和力和自由能计算,发现 E484K、N501Y 和三重突变体变体与 ACE2 的相互作用比野生型刺突更强。有趣的是,分子动力学和 MM-PBSA 结果表明,E484K 和刺突三重突变体复合物比 N501Y 更稳定。此外,E484K 和南非三重突变体比 N501Y 更能引发刺突糖蛋白的构象变化。E484K 变体单独或 K417N+E484K+N501Y 突变的组合会导致刺突糖蛋白发生显著的构象转变,同时增加刺突-ACE2 的结合亲和力。由 Ramaswamy H. Sarma 交流。