Computational Biological Center, IBM Thomas J. Watson Research, Yorktown Heights, New York, NY, USA.
Neoland Biosciences, Medford, MA, USA.
FEBS Lett. 2021 May;595(10):1454-1461. doi: 10.1002/1873-3468.14076. Epub 2021 Apr 3.
Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (B.1.1.7 and B.1351) have emerged harbouring mutations that make them highly contagious. The N501Y mutation within the receptor-binding domain (RBD) of the spike protein of these SARS-CoV-2 variants may enhance binding to the human angiotensin-converting enzyme 2 (hACE2). However, no molecular explanation for such an enhanced affinity has so far been provided. Here, using all-atom molecular dynamics simulations, we show that Y501 in the mutated RBD can be well-coordinated by Y41 and K353 in hACE2 through hydrophobic interactions, which may increase the overall binding affinity of the RBD for hACE2 by approximately 0.81 kcal·mol . The binding dynamics revealed in our study may provide a working model to facilitate the design of more effective antibodies.
最近,出现了严重急性呼吸系统综合征冠状病毒 2 (SARS-CoV-2)变体(B.1.1.7 和 B.1351),它们携带着使其具有高度传染性的突变。这些 SARS-CoV-2 变体的刺突蛋白受体结合域(RBD)中的 N501Y 突变可能增强与人类血管紧张素转化酶 2(hACE2)的结合。然而,迄今为止,尚未提供对这种增强亲和力的分子解释。在这里,我们使用全原子分子动力学模拟表明,hACE2 中的 Y41 和 K353 可以通过疏水相互作用很好地协调突变 RBD 中的 Y501,这可能使 RBD 与 hACE2 的总结合亲和力增加约 0.81 kcal·mol -1 。我们研究中揭示的结合动力学可能提供一个工作模型,以促进更有效的抗体的设计。