Huang Hung-Yu
University of Taipei, Taiwan.
Educ Psychol Meas. 2023 Feb;83(1):146-180. doi: 10.1177/00131644211069906. Epub 2022 Jan 7.
The forced-choice (FC) item formats used for noncognitive tests typically develop a set of response options that measure different traits and instruct respondents to make judgments among these options in terms of their preference to control the response biases that are commonly observed in normative tests. Diagnostic classification models (DCMs) can provide information regarding the mastery status of test takers on latent discrete variables and are more commonly used for cognitive tests employed in educational settings than for noncognitive tests. The purpose of this study is to develop a new class of DCM for FC items under the higher-order DCM framework to meet the practical demands of simultaneously controlling for response biases and providing diagnostic classification information. By conducting a series of simulations and calibrating the model parameters with a Bayesian estimation, the study shows that, in general, the model parameters can be recovered satisfactorily with the use of long tests and large samples. More attributes improve the precision of the second-order latent trait estimation in a long test, but decrease the classification accuracy and the estimation quality of the structural parameters. When statements are allowed to load on two distinct attributes in paired comparison items, the specific-attribute condition produces better a parameter estimation than the overlap-attribute condition. Finally, an empirical analysis related to work-motivation measures is presented to demonstrate the applications and implications of the new model.
用于非认知测试的强制选择(FC)项目格式通常会开发一组测量不同特质的响应选项,并指示受访者根据自己的偏好对这些选项进行判断,以控制在规范性测试中常见的响应偏差。诊断分类模型(DCM)可以提供有关考生在潜在离散变量上的掌握状态的信息,并且在教育环境中用于认知测试的情况比用于非认知测试更为常见。本研究的目的是在高阶DCM框架下为FC项目开发一类新的DCM,以满足同时控制响应偏差和提供诊断分类信息的实际需求。通过进行一系列模拟并使用贝叶斯估计对模型参数进行校准,研究表明,一般来说,使用长测试和大样本可以令人满意地恢复模型参数。更多属性在长测试中提高了二阶潜在特质估计的精度,但降低了分类准确性和结构参数的估计质量。当在配对比较项目中允许陈述加载到两个不同的属性上时,特定属性条件比重叠属性条件产生更好的参数估计。最后,给出了一项与工作动机测量相关的实证分析,以展示新模型的应用和意义。