Suppr超能文献

检验一般诊断分类模型中的参数不变性。

Examining Parameter Invariance in a General Diagnostic Classification Model.

作者信息

Ravand Hamdollah, Baghaei Purya, Doebler Philip

机构信息

English Department, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

English Department, Mashhad Branch, Islamic Azad University of Mashhad, Mashhad, Iran.

出版信息

Front Psychol. 2020 Jan 13;10:2930. doi: 10.3389/fpsyg.2019.02930. eCollection 2019.

Abstract

The present study aimed at investigating invariance of a diagnostic classification model (DCM) for reading comprehension across gender. In contrast to models with continuous traits, diagnostic classification models inform mastery of a finite set of latent attributes, e.g., vocabulary or syntax in the reading context, and allow to provide fine grained feedback to learners and instructors. The generalized deterministic, noisy "and" gate (G-DINA) model was fit to item responses of 1000 male and female individuals to a high-stakes reading comprehension test. Use of the G-DINA model allowed for minimal assumption on the relationship of latent attribute profiles and item-specific response probabilities, i.e., the G-DINA model can represent compensatory or non-compensatory relationships of latent attributes and response probabilities. Item parameters were compared across the two samples, and only a small number of item parameters were statistically different between the two groups, corroborating the result of a formal measurement invariance test based on the multigroup G-DINA model. Neither correlations between latent attributes were significantly different across the two groups, nor mastery probabilities for any of the attributes. Model selection at item level showed that from among the 18 items that required multiple attributes, 16 items picked different rules (DCMs) across the groups. While this seems to suggest that the relationship among the attributes of reading comprehension differs across the two groups, a closer inspection of the rules picked by the items showed that almost in all cases the relationships were very similar. If a compensatory DCM was suggested by the G-DINA framework for an item in the female group, a model belonging to the same family resulted for the male group.

摘要

本研究旨在调查一种用于阅读理解的诊断分类模型(DCM)在不同性别间的不变性。与具有连续特质的模型不同,诊断分类模型能够反映对一组有限潜在属性的掌握情况,例如阅读情境中的词汇或句法,并允许向学习者和教师提供细粒度的反馈。广义确定性噪声“与”门(G-DINA)模型被用于拟合1000名男性和女性个体对一项高风险阅读理解测试的项目反应。使用G-DINA模型对潜在属性轮廓与特定项目反应概率之间的关系所需的假设最少,即G-DINA模型可以表示潜在属性与反应概率之间的补偿性或非补偿性关系。对两个样本的项目参数进行了比较,两组之间只有少数项目参数在统计上存在差异,这证实了基于多组G-DINA模型的正式测量不变性测试的结果。两组之间潜在属性的相关性以及任何属性的掌握概率均无显著差异。项目层面的模型选择表明,在需要多个属性的18个项目中,有16个项目在不同组中选择了不同的规则(DCM)。虽然这似乎表明两组之间阅读理解属性的关系有所不同,但对项目选择的规则进行更仔细的检查发现,几乎在所有情况下,关系都非常相似。如果G-DINA框架为女性组中的一个项目建议了一个补偿性DCM,那么男性组也会得到属于同一族的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3583/6970347/a35ffdeb7e67/fpsyg-10-02930-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验