Suppr超能文献

用高阶诊断模型推断多项数据中的潜在结构。

Inferring Latent Structure in Polytomous Data with a Higher-Order Diagnostic Model.

机构信息

Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL.

Departments of Informatics and Statistics, University of Illinois at Urbana-Champaign.

出版信息

Multivariate Behav Res. 2023 Mar-Apr;58(2):368-386. doi: 10.1080/00273171.2021.1985949. Epub 2021 Oct 26.

Abstract

Researchers continue to develop and advance models for diagnostic research in the social and behavioral sciences. These diagnostic models (DMs) provide researchers with a framework for providing a fine-grained classification of respondents into substantively meaningful latent classes as defined by a multivariate collection of binary attributes. A central concern for DMs is advancing exploratory methods for uncovering the latent structure, which corresponds with the relationship between unobserved binary attributes and observed polytomous items with two or more response options. Multivariate behavioral polytomous data are often collected within a higher-order design where general factors underlying first-order latent variables. This study advances existing exploratory DMs for polytomous data by proposing a new method for inferring the latent structure underlying polytomous response data using a higher-order model to describe dependence among the discrete latent attributes. We report a novel Bayesian formulation that uses variable selection techniques for inferring the latent structure along with a higher-order factor model for attributes. We report evidence of accurate parameter recovery in a Monte Carlo simulation study and present results from an application to the 2012 Programme for International Student Assessment (PISA) problem-solving vignettes to demonstrate the method.

摘要

研究人员继续开发和推进社会和行为科学中诊断研究的模型。这些诊断模型 (DM) 为研究人员提供了一个框架,用于根据多元二进制属性的集合对受访者进行精细的潜在类别分类。DM 的一个核心关注点是推进探索性方法,以揭示潜在结构,这与未观察到的二进制属性与具有两个或更多响应选项的观察到的多元项目之间的关系相对应。多元行为多元数据通常在高阶设计中收集,其中一阶潜在变量的一般因素。本研究通过提出一种新方法来推断多元响应数据的潜在结构,使用高阶模型来描述离散潜在属性之间的依赖性,从而推进了现有的探索性 DM 。我们报告了一种新的贝叶斯公式,该公式使用变量选择技术来推断潜在结构以及属性的高阶因子模型。我们报告了在蒙特卡罗模拟研究中准确恢复参数的证据,并展示了对 2012 年国际学生评估计划 (PISA) 解决问题小插图的应用结果,以演示该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验