Suppr超能文献

利用 MALDI-TOF 质谱和机器学习鉴定脓肿分枝杆菌亚种。

Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning.

机构信息

Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.

Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.

出版信息

J Clin Microbiol. 2023 Jan 26;61(1):e0111022. doi: 10.1128/jcm.01110-22. Epub 2023 Jan 5.

Abstract

Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. , M. abscessus subsp. , and M. abscessus subsp. . Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS.

摘要

脓肿分枝杆菌是临床实验室中最常见和致病性的非结核分枝杆菌(NTM)之一。它由三个亚种组成:脓肿分枝杆菌亚种、脓肿分枝杆菌亚种和脓肿分枝杆菌亚种。由于它们对抗生素的敏感性不同,因此需要一种快速准确的方法来区分它们。尽管基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)已被证明对 NTM 鉴定有用,但区分脓肿分枝杆菌亚种具有挑战性。在这项研究中,使用了 325 株临床分离的脓肿分枝杆菌进行 MALDI-TOF MS 分析,并基于 MALDI-TOF MS 蛋白谱开发了机器学习预测模型。总体而言,使用具有几个置信标准(三重复制样本和相似度值>60%)的随机森林模型,总共可以正确鉴定 96.5%的亚种水平的分离株。此外,一个包含西班牙分离株的改进模型能够识别其他国家收集的 88.9%的菌株。此外,还评估了菌株的培养基、菌落形态和地理来源的差异,结果表明后者对蛋白谱有影响。最后,在研究了该物种以前报道的所有蛋白峰后,发现了两个具有亚种分化潜力的新峰。因此,机器学习方法已被证明是使用 MALDI-TOF MS 快速准确鉴定脓肿分枝杆菌亚种的一种很有前途的方法。

相似文献

1
Identification of Mycobacterium abscessus Subspecies by MALDI-TOF Mass Spectrometry and Machine Learning.
J Clin Microbiol. 2023 Jan 26;61(1):e0111022. doi: 10.1128/jcm.01110-22. Epub 2023 Jan 5.
3
A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).
Diagn Microbiol Infect Dis. 2015 Dec;83(4):365-70. doi: 10.1016/j.diagmicrobio.2015.08.011. Epub 2015 Aug 22.
5
Evaluation of nucleotide MALDI-TOF-MS for the identification of species.
Front Cell Infect Microbiol. 2024 Feb 6;14:1335104. doi: 10.3389/fcimb.2024.1335104. eCollection 2024.
10

引用本文的文献

2
Automated identification of serotype using MALDI-TOF mass spectrometry and machine learning techniques.
J Clin Microbiol. 2025 Jul 9;63(7):e0003725. doi: 10.1128/jcm.00037-25. Epub 2025 Jun 11.
3
Lipid fingerprinting by MALDI Biotyper Sirius instrument fails to differentiate the three subspecies of the complex.
J Clin Microbiol. 2025 Apr 9;63(4):e0148424. doi: 10.1128/jcm.01484-24. Epub 2025 Mar 14.
4
A rapid and simple MALDI-TOF MS lipid profiling method for differentiating from .
J Clin Microbiol. 2025 Mar 12;63(3):e0140024. doi: 10.1128/jcm.01400-24. Epub 2025 Jan 27.
6
Advancing Laboratory Medicine Practice With Machine Learning: Swift yet Exact.
Ann Lab Med. 2025 Jan 1;45(1):22-35. doi: 10.3343/alm.2024.0354. Epub 2024 Nov 26.
9
Classification of subspecies based on MALDI-TOF MS protein profiles using machine learning models.
Microbiol Spectr. 2024 Oct 3;12(10):e0366823. doi: 10.1128/spectrum.03668-23. Epub 2024 Aug 20.

本文引用的文献

1
Rapid and Accurate Differentiation of Complex Species by Liquid Chromatography-Ultra-High-Resolution Orbitrap™ Mass Spectrometry.
Front Cell Infect Microbiol. 2022 Mar 9;12:809348. doi: 10.3389/fcimb.2022.809348. eCollection 2022.
3
Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning.
Nat Med. 2022 Jan;28(1):164-174. doi: 10.1038/s41591-021-01619-9. Epub 2022 Jan 10.
4
An Improved Method for Rapid Detection of Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF.
Front Chem. 2021 Jul 27;9:715890. doi: 10.3389/fchem.2021.715890. eCollection 2021.
6
Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review.
Clin Microbiol Infect. 2020 Oct;26(10):1310-1317. doi: 10.1016/j.cmi.2020.03.014. Epub 2020 Mar 23.
7
Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus.
Nat Rev Microbiol. 2020 Jul;18(7):392-407. doi: 10.1038/s41579-020-0331-1. Epub 2020 Feb 21.
8
: Environmental Bacterium Turned Clinical Nightmare.
Microorganisms. 2019 Mar 22;7(3):90. doi: 10.3390/microorganisms7030090.
9
Glycopeptidolipids, a Double-Edged Sword of the Complex.
Front Microbiol. 2018 Jun 5;9:1145. doi: 10.3389/fmicb.2018.01145. eCollection 2018.
10
How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry.
Clin Microbiol Infect. 2018 Jun;24(6):599-603. doi: 10.1016/j.cmi.2017.11.012. Epub 2017 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验