Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
J Clin Microbiol. 2023 Jan 26;61(1):e0111022. doi: 10.1128/jcm.01110-22. Epub 2023 Jan 5.
Mycobacterium abscessus is one of the most common and pathogenic nontuberculous mycobacteria (NTM) isolated in clinical laboratories. It consists of three subspecies: M. abscessus subsp. , M. abscessus subsp. , and M. abscessus subsp. . Due to their different antibiotic susceptibility pattern, a rapid and accurate identification method is necessary for their differentiation. Although matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has proven useful for NTM identification, the differentiation of M. abscessus subspecies is challenging. In this study, a collection of 325 clinical isolates of M. abscessus was used for MALDI-TOF MS analysis and for the development of machine learning predictive models based on MALDI-TOF MS protein spectra. Overall, using a random forest model with several confidence criteria (samples by triplicate and similarity values >60%), a total of 96.5% of isolates were correctly identified at the subspecies level. Moreover, an improved model with Spanish isolates was able to identify 88.9% of strains collected in other countries. In addition, differences in culture media, colony morphology, and geographic origin of the strains were evaluated, showing that the latter had an impact on the protein spectra. Finally, after studying all protein peaks previously reported for this species, two novel peaks with potential for subspecies differentiation were found. Therefore, machine learning methodology has proven to be a promising approach for rapid and accurate identification of subspecies of M. abscessus using MALDI-TOF MS.
脓肿分枝杆菌是临床实验室中最常见和致病性的非结核分枝杆菌(NTM)之一。它由三个亚种组成:脓肿分枝杆菌亚种、脓肿分枝杆菌亚种和脓肿分枝杆菌亚种。由于它们对抗生素的敏感性不同,因此需要一种快速准确的方法来区分它们。尽管基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)已被证明对 NTM 鉴定有用,但区分脓肿分枝杆菌亚种具有挑战性。在这项研究中,使用了 325 株临床分离的脓肿分枝杆菌进行 MALDI-TOF MS 分析,并基于 MALDI-TOF MS 蛋白谱开发了机器学习预测模型。总体而言,使用具有几个置信标准(三重复制样本和相似度值>60%)的随机森林模型,总共可以正确鉴定 96.5%的亚种水平的分离株。此外,一个包含西班牙分离株的改进模型能够识别其他国家收集的 88.9%的菌株。此外,还评估了菌株的培养基、菌落形态和地理来源的差异,结果表明后者对蛋白谱有影响。最后,在研究了该物种以前报道的所有蛋白峰后,发现了两个具有亚种分化潜力的新峰。因此,机器学习方法已被证明是使用 MALDI-TOF MS 快速准确鉴定脓肿分枝杆菌亚种的一种很有前途的方法。