Suppr超能文献

采用液相色谱-超高分辨轨道阱质谱技术快速准确区分复杂物种。

Rapid and Accurate Differentiation of Complex Species by Liquid Chromatography-Ultra-High-Resolution Orbitrap™ Mass Spectrometry.

机构信息

ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, United States.

Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, United States.

出版信息

Front Cell Infect Microbiol. 2022 Mar 9;12:809348. doi: 10.3389/fcimb.2022.809348. eCollection 2022.

Abstract

In this study, a Liquid Chromatography-Mass Spectrometry (LC-MS) method for the identification of clinically relevant () complex organisms is tested using a set of microbial Type strains. This methodology is based on profiling proteins derived from complex isolates. These protein profiles are then used as markers of species differentiation. To test the resolving power, speed, and accuracy of this assay four ATCC type strains and 32 recent clinical isolates of closely related species collected at ARUP laboratories (10 clinical isolate strains of subsp. , 10 subsp. , 2 subsp. and 10 ) were subjected to this approach. Using multiple deconvolution algorithms, we identified hundreds of individual proteins, with subpopulations of these used as species-specific markers. This assay identified 150, 130, 140 and 110 proteoforms with isocratic elution and 230, 180, 200 and 190 proteoforms with gradient elution for (ATCC 19977), (DSM 45103), (DSM 45149) and (ATCC 35752) respectively. Taxonomic species were identified correctly down to the species level with 100% accuracy. The ability to differentiate at sub-species level can in-turn be helpful for patient management. Data analysis showed ~7-17 proteoforms potentially able to differentiate between subspecies. Here, we present a proof-of-principle study employing a rapid mass spectrometry-based method to identify the clinically most common species within the species complex.

摘要

在这项研究中,使用一组微生物标准菌株测试了一种用于鉴定临床相关 ()复合生物体的液相色谱-质谱(LC-MS)方法。该方法基于从 复合分离物中提取的蛋白质图谱。然后,这些蛋白质图谱被用作物种分化的标志物。为了测试该测定法的分辨率、速度和准确性,我们将四个 ATCC 标准菌株和在 ARUP 实验室收集的 32 株最近的密切相关的 种临床分离株(10 株 亚种临床分离株、10 株 亚种、2 株 亚种和 10 株 亚种)进行了该方法的处理。使用多种去卷积算法,我们鉴定了数百种单个蛋白质,其中这些蛋白质的亚群被用作物种特异性标志物。该测定法在等度洗脱时鉴定出 150、130、140 和 110 种蛋白形式,在梯度洗脱时鉴定出 150、130、140 和 110 种蛋白形式用于 (ATCC 19977)、 (DSM 45103)、 (DSM 45149)和 (ATCC 35752)。分类物种的鉴定准确率达到 100%,可准确鉴定到种水平。区分亚种水平的能力反过来也有助于患者管理。数据分析显示,有~7-17 种蛋白形式可能有助于区分亚种。在这里,我们提出了一项原理验证研究,该研究采用基于快速质谱的方法来鉴定 种复合体中最常见的临床相关物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb31/8959847/0e4f694c712a/fcimb-12-809348-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验