Suppr超能文献

使用机器学习从临床基质辅助激光解吸电离飞行时间质谱直接预测抗菌药物耐药性

Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning.

作者信息

Weis Caroline, Cuénod Aline, Rieck Bastian, Dubuis Olivier, Graf Susanne, Lang Claudia, Oberle Michael, Brackmann Maximilian, Søgaard Kirstine K, Osthoff Michael, Borgwardt Karsten, Egli Adrian

机构信息

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

Nat Med. 2022 Jan;28(1):164-174. doi: 10.1038/s41591-021-01619-9. Epub 2022 Jan 10.

Abstract

Early use of effective antimicrobial treatments is critical for the outcome of infections and the prevention of treatment resistance. Antimicrobial resistance testing enables the selection of optimal antibiotic treatments, but current culture-based techniques can take up to 72 hours to generate results. We have developed a novel machine learning approach to predict antimicrobial resistance directly from matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectra profiles of clinical isolates. We trained calibrated classifiers on a newly created publicly available database of mass spectra profiles from the clinically most relevant isolates with linked antimicrobial susceptibility phenotypes. This dataset combines more than 300,000 mass spectra with more than 750,000 antimicrobial resistance phenotypes from four medical institutions. Validation on a panel of clinically important pathogens, including Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae, resulting in areas under the receiver operating characteristic curve of 0.80, 0.74 and 0.74, respectively, demonstrated the potential of using machine learning to substantially accelerate antimicrobial resistance determination and change of clinical management. Furthermore, a retrospective clinical case study of 63 patients found that implementing this approach would have changed the clinical treatment in nine cases, which would have been beneficial in eight cases (89%). MALDI-TOF mass spectra-based machine learning may thus be an important new tool for treatment optimization and antibiotic stewardship.

摘要

早期使用有效的抗菌治疗对于感染的治疗结果和预防治疗耐药性至关重要。抗菌药物敏感性测试有助于选择最佳的抗生素治疗方案,但目前基于培养的技术可能需要长达72小时才能得出结果。我们开发了一种新颖的机器学习方法,可直接从临床分离株的基质辅助激光解吸/电离飞行时间(MALDI-TOF)质谱图预测抗菌药物耐药性。我们在一个新创建的公开可用数据库上训练了校准分类器,该数据库包含来自临床上最相关分离株的质谱图以及相关的抗菌药物敏感性表型。该数据集结合了来自四个医疗机构的30多万个质谱图和75万多个抗菌药物耐药性表型。对一组临床上重要的病原体(包括金黄色葡萄球菌、大肠杆菌和肺炎克雷伯菌)进行验证,结果显示受试者工作特征曲线下面积分别为0.80、0.74和0.74,这表明利用机器学习可大幅加速抗菌药物耐药性的判定并改变临床管理。此外,一项对63例患者的回顾性临床病例研究发现,采用这种方法将改变9例患者的临床治疗,其中8例(89%)会从中受益。因此,基于MALDI-TOF质谱图的机器学习可能成为治疗优化和抗生素管理的一项重要新工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验