Suppr超能文献

基于卫星数据的空气质量指数分析与预测。

Analysis and forecasting of air quality index based on satellite data.

机构信息

Indian Institute of Information Technology Allahabad, Prayagraj, India.

SHUATS, Prayagraj, India.

出版信息

Inhal Toxicol. 2023 Jan-Feb;35(1-2):24-39. doi: 10.1080/08958378.2022.2164388. Epub 2023 Jan 5.

Abstract

OBJECTIVE

The air quality index (AQI) forecasts are one of the most important aspects of improving urban public health and enabling society to remain sustainable despite the effects of air pollution. Pollution control organizations deploy ground stations to collect information about air pollutants. Establishing a ground station all-around is not feasible due to the cost involved. As an alternative, satellite-captured data can be utilized for AQI assessment. This study explores the changes in AQI during various COVID-19 lockdowns in India utilizing satellite data. Furthermore, it addresses the effectiveness of state-of-the-art deep learning and statistical approaches for forecasting short-term AQI.

MATERIALS AND METHODS

Google Earth Engine (GEE) has been utilized to capture the data for the study. The satellite data has been authenticated against ground station data utilizing the beta distribution test before being incorporated into the study. The AQI forecasting has been explored using state-of-the-art statistical and deep learning approaches like VAR, Holt-Winter, and LSTM variants (stacked, bi-directional, and vanilla).

RESULTS

AQI ranged from 100 to 300, from moderately polluted to very poor during the study period. The maximum reduction was recorded during the complete lockdown period in the year 2020. Short-term AQI forecasting with Holt-Winter was more accurate than other models with the lowest MAPE scores.

CONCLUSIONS

Based on our findings, air pollution is clearly a threat in the studied locations, and it is important for all stakeholders to work together to reduce it. The level of air pollutants dropped substantially during the different lockdowns.

摘要

目的

空气质量指数(AQI)预测是改善城市公共健康并使社会在面临空气污染影响时保持可持续发展的最重要方面之一。污染控制组织部署地面站来收集有关空气污染物的信息。由于成本原因,建立全方位的地面站是不可行的。作为替代方案,可以利用卫星捕获的数据进行 AQI 评估。本研究利用卫星数据探讨了印度在不同 COVID-19 封锁期间 AQI 的变化,并探讨了最先进的深度学习和统计方法在短期 AQI 预测中的有效性。

材料和方法

本研究利用 Google Earth Engine(GEE)获取数据。在将卫星数据纳入研究之前,利用β分布测试对其与地面站数据进行了验证。使用最先进的统计和深度学习方法,如 VAR、Holt-Winter 和 LSTM 变体(堆叠、双向和香草)探索了 AQI 预测。

结果

在研究期间,AQI 范围为 100 至 300,从中度污染到非常差。2020 年全面封锁期间记录到的最大降幅。与其他模型相比,Holt-Winter 进行短期 AQI 预测的准确性更高,其平均绝对百分比误差(MAPE)得分最低。

结论

根据我们的研究结果,空气污染显然是研究地点的一个威胁,所有利益相关者都需要共同努力来减少它。在不同的封锁期间,空气污染物的水平大幅下降。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验