Suppr超能文献

基于空气质量预测的大数据分析,采用赫布一致性和基于注意力的长短期记忆模型

Air quality prediction-based big data analytics using hebbian concordance and attention-based long short-term memory.

作者信息

Sekar Sathishkumar, Wei Zhang

机构信息

School of Software, East China University of Technology, No. 418, Guanglan Avenue, Economic Development District, Nanchang City, Jiangxi Province, China.

School of Software, East China University of Technlogy, No.418, Guanglan Avenue, Economic Development District, Nanchang City, Jiangxi Province, China.

出版信息

Sci Rep. 2025 Aug 6;15(1):28719. doi: 10.1038/s41598-025-09508-8.

Abstract

With the instantaneous economic development, air quality keeps on dwindling. Some key factors for the emergence and evolution of air pollution are high-intensity pollution emissions and adverse weather circumstances. In air pollutants, Particulate Matter (PM) possessing less than 2.5Mu is considered the most severe health issue, resulting in respiratory tract illness and cardiovascular disease. Therefore, it is mandatory to predict PM 2.5 concentrations accurately to ward off the general public from the desperate influence of air pollution in advance owing to its complex nature. Aiming at the complexity of air quality prediction, a new method called Hebbian Concordance and Attention-based Long Short-Term Memory (HC-ALSTM) is proposed. The HC-ALSTM method is split into four sections. They are preprocessing using the Statistical Normalization-based Preprocessing model, feature extraction employing the Generalised Hebbian Spatio Temporal Feature extraction model, feature selection using Concordance Correlation function, and Attention-based Long Short-Term Memory for air quality prediction. First, the Statistical Normalization-based Preprocessing model is applied to the raw dataset to normalize the impact of distinct air pollutants on the bordering factor. Second, with the Generalised Hebbian Spatio Temporal Feature extraction algorithm, processed samples are applied to extract the dimensionality-reduced spatio-temporal feature. Third, with the extracted features, essential or significant features are selected using Concordance Correlation analysis that determines the impact of pollutant concentration of bordering places for predicting air quality index involving both city and state, daily and hourly. Finally, Attention-based Long Short-Term Memory is applied to the extracted and selected features to predict air quality accurately. Through evaluation and analysis using two other evaluation methods, the proposed HC-ALSTM method performs better in error and time. Our method has dramatically improved air quality prediction accuracy and overhead compared with other methods.

摘要

随着经济的快速发展,空气质量持续下降。空气污染产生和演变的一些关键因素是高强度的污染排放和不利的天气情况。在空气污染物中,粒径小于2.5微米的颗粒物(PM)被认为是最严重的健康问题,会导致呼吸道疾病和心血管疾病。因此,由于其性质复杂,必须准确预测PM 2.5浓度,以使公众提前免受空气污染的严重影响。针对空气质量预测的复杂性,提出了一种名为基于赫布一致性和注意力机制的长短期记忆网络(HC-ALSTM)的新方法。HC-ALSTM方法分为四个部分。它们分别是使用基于统计归一化的预处理模型进行预处理、采用广义赫布时空特征提取模型进行特征提取、使用一致性相关函数进行特征选择以及基于注意力机制的长短期记忆网络用于空气质量预测。首先,将基于统计归一化的预处理模型应用于原始数据集,以归一化不同空气污染物对周边因素的影响。其次,利用广义赫布时空特征提取算法,对处理后的样本进行降维时空特征提取。第三,利用提取的特征,通过一致性相关分析选择重要或显著特征,该分析确定周边地区污染物浓度对预测涉及城市和州、每日和每小时的空气质量指数的影响。最后,将基于注意力机制的长短期记忆网络应用于提取和选择的特征,以准确预测空气质量。通过使用另外两种评估方法进行评估和分析,所提出的HC-ALSTM方法在误差和时间方面表现更好。与其他方法相比,我们的方法显著提高了空气质量预测的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48de/12328754/13f63f7e1ffd/41598_2025_9508_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验