Suppr超能文献

用于能量存储的功能化玻璃上的纳米结构聚(3,4-亚乙基二氧噻吩)涂层

Nanostructured Poly(3,4-ethylenedioxythiophene) Coatings on Functionalized Glass for Energy Storage.

作者信息

Yang Haoru, Chow Brandon, Awoyomi Abayomi, D'Arcy Julio M

机构信息

Department of Chemistry, Washington University in St. Louis, Saint Louis, Missouri 63130, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Jan 18;15(2):3235-3243. doi: 10.1021/acsami.2c20328. Epub 2023 Jan 5.

Abstract

Conducting polymers rise among some of the most promising transparent supercapacitor electrode materials due to high conductivity, environmental stability, light weight, and ease of synthesis. A major challenge for depositing conducting polymers on a glass substrate is the lack of molecular interactions between organic and inorganic moieties resulting in poor adhesion and low cycling stability of the electrode. We present a synthetic approach by covalently linking poly(3,4-ethylyenedioxythiophene) (PEDOT) and glass through Friedel-Crafts alkylation on a self-assembled diphenyldimethoxysilane monolayer. This method obviates the need for a conductive FTO or ITO coating, enabling the fabrication of current collector-free planar supercapacitor electrodes on any glass surface. The electrode produced from our vapor-phase synthesis is coated with a highly conductive nanofibrillar PEDOT film (sheet resistance 2.1 Ω/□) possessing a gravimetric capacitance of ∼200 F/g. Our PEDOT planar supercapacitor possesses outstanding stability (86% capacitance retention after 50,000 cycles). We also fabricate a proof-of-concept transparent tandem supercapacitor on PEDOT-coated glass using 3D-printed frames that supplies enough voltage and current to light up a blue light-emitting diode (LED).

摘要

导电聚合物因其高导电性、环境稳定性、轻质以及易于合成等特点,成为最具潜力的透明超级电容器电极材料之一。在玻璃基板上沉积导电聚合物面临的一个主要挑战是有机和无机部分之间缺乏分子相互作用,导致电极的附着力差和循环稳定性低。我们提出了一种通过在自组装的二苯基二甲氧基硅烷单分子层上进行傅克烷基化反应,将聚(3,4-乙撑二氧噻吩)(PEDOT)与玻璃共价连接的合成方法。这种方法无需导电的FTO或ITO涂层,能够在任何玻璃表面制造无集流体的平面超级电容器电极。我们通过气相合成制备的电极涂覆有高导电性的纳米纤维状PEDOT薄膜(表面电阻为2.1Ω/□),其比电容为200 F/g。我们的PEDOT平面超级电容器具有出色的稳定性(50,000次循环后电容保持率为86%)。我们还使用3D打印框架在涂覆PEDOT的玻璃上制造了一个概念验证透明串联超级电容器,该超级电容器能够提供足够的电压和电流来点亮一个蓝色发光二极管(LED)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验