Suppr超能文献

心肌磁共振成像衍生的心肌纤维化参数在肥厚型心肌病患者危险分层中的价值。

The Value of Myocardial Fibrosis Parameters Derived from Cardiac Magnetic Resonance Imaging in Risk Stratification for Patients with Hypertrophic Cardiomyopathy.

机构信息

Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.

Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.

出版信息

Acad Radiol. 2023 Sep;30(9):1962-1978. doi: 10.1016/j.acra.2022.12.026. Epub 2023 Jan 3.

Abstract

RATIONALE AND OBJECTIVES

The aim of the study was to determine whether myocardial fibrosis parameters of cardiac magnetic resonance imaging (MRI) has added value in the risk stratification of hypertrophic cardiomyopathy (HCM) patients.

MATERIALS AND METHODS

In this retrospective study, 108 patients with HCM (mean age ± standard deviation, 55.5 ± 13.4 years) were included from January 2019 to April 2022, and were followed up for 2 years to record sudden cardiac death (SCD) adverse events. All HCM patients underwent cardiac MRI and were divided into a training cohort (n = 81; mean age, 56.1 ± 13.0 years) and a validation cohort (n = 27; mean age, 57.8 ± 13.9 years). According to the presence of SCD risk factors defined by the 2020 AHA/ACC guidelines, HCM patients were classified into low-risk and high-risk groups. Cardiac MRI features, including late gadolinium enhancement (LGE), T1 mapping, and extracellular volume fraction (ECV), were assessed and compared between the two groups. Logistic regression analysis was used to select the optimal predictors of SCD from cardiac MRI features and HCM Risk-SCD score to construct prediction models. Receiver operating curve (ROC) analysis was used to assess the predictive performance of the constructed prediction model. Cox regression analysis was also used to determine the optimal predictors of SCD adverse events.

RESULTS

Multivariate logistic analysis showed that the global ECV was the single myocardial fibrosis parameter predictive of the risk of SCD (p < 0.001). The areas under the ROC curves (AUC) of global ECV were higher than those of LGE, global native T1, global postcontrast T1, and HCM Risk-SCD (AUC = 0.85 vs. 0.74, 0.77, 0.63, 0.78). An integrative risk stratification model combining global ECV (odds ratio, 1.36 [95% CI: 1.16-1.60]; p < 0.001) and HCM Risk-SCD score (odds ratio, 1.63 [95% CI: 1.08-2.47]; p < 0.001) achieved an AUC of 0.89 (95% CI: 0.81-0.96) in the training cohort, which was significantly higher than that of HCM Risk-SCD score alone (p = 0.03). The AUC of the integrative model was 0.93 (95% CI: 0.84-1.00) in the validation cohort. Multivariate Cox regression analysis also showed that the global ECV was an independent predictor of SCD adverse events (hazard ratio, 1.27 [95% CI: 1.10-1.47]).

CONCLUSION

The ECV derived from cardiac MRI is comparable to the HCM Risk-SCD scale in predicting the SCD risk stratification in patients with HCM.

摘要

背景与目的

本研究旨在探讨心脏磁共振成像(CMR)心肌纤维化参数在肥厚型心肌病(HCM)患者危险分层中的作用。

材料与方法

本回顾性研究纳入了 2019 年 1 月至 2022 年 4 月期间的 108 例 HCM 患者(平均年龄±标准差,55.5±13.4 岁),并对其进行了 2 年的随访,以记录猝死(SCD)不良事件。所有 HCM 患者均行 CMR 检查,并分为训练队列(n=81;平均年龄 56.1±13.0 岁)和验证队列(n=27;平均年龄 57.8±13.9 岁)。根据 2020 年 AHA/ACC 指南定义的 SCD 危险因素,将 HCM 患者分为低危组和高危组。评估并比较两组间心脏 MRI 特征,包括延迟钆增强(LGE)、T1 映射和细胞外容积分数(ECV)。采用 logistic 回归分析从心脏 MRI 特征和 HCM Risk-SCD 评分中选择 SCD 的最佳预测因子,构建预测模型。采用受试者工作特征曲线(ROC)分析评估构建的预测模型的预测性能。采用 Cox 回归分析确定 SCD 不良事件的最佳预测因子。

结果

多变量 logistic 分析显示,全球 ECV 是预测 SCD 风险的唯一心肌纤维化参数(p<0.001)。全球 ECV 的 ROC 曲线下面积(AUC)高于 LGE、全球 native T1、全球 postcontrast T1 和 HCM Risk-SCD(AUC=0.85 比 0.74、0.77、0.63、0.78)。结合全球 ECV(比值比,1.36[95%CI:1.16-1.60];p<0.001)和 HCM Risk-SCD 评分(比值比,1.63[95%CI:1.08-2.47];p<0.001)的综合危险分层模型在训练队列中的 AUC 为 0.89(95%CI:0.81-0.96),显著高于单独使用 HCM Risk-SCD 评分(p=0.03)。综合模型在验证队列中的 AUC 为 0.93(95%CI:0.84-1.00)。多变量 Cox 回归分析还显示,全球 ECV 是 SCD 不良事件的独立预测因子(风险比,1.27[95%CI:1.10-1.47])。

结论

心脏 MRI 衍生的 ECV 与 HCM Risk-SCD 评分在预测 HCM 患者 SCD 危险分层方面具有可比性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验