Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Department of Microbiology and Immunology, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
Semin Perinatol. 2023 Feb;47(1):151693. doi: 10.1016/j.semperi.2022.151693. Epub 2022 Dec 21.
Necrotizing enterocolitis (NEC) continues to be a major cause of morbidity and mortality in preterm infants. Despite decades of research in NEC, no reliable biomarkers can accurately diagnose NEC or predict patient prognosis. The recent emergence of multi-omics could potentially shift NEC biomarker discovery, particularly when evaluated using systems biology techniques. Furthermore, the use of machine learning and artificial intelligence in analyzing this 'big data' could enable novel interpretations of NEC subtypes, disease progression, and potential therapeutic targets, allowing for integration with personalized medicine approaches. In this review, we evaluate studies using omics technologies and machine learning in the diagnosis of NEC. Future implications and challenges inherent to the field are also discussed.
新生儿坏死性小肠结肠炎(NEC)仍然是早产儿发病和死亡的主要原因。尽管在 NEC 方面已经开展了数十年的研究,但仍没有可靠的生物标志物可以准确诊断 NEC 或预测患者预后。最近出现的多组学技术可能会改变 NEC 生物标志物的发现,特别是在使用系统生物学技术进行评估时。此外,在分析这种“大数据”时使用机器学习和人工智能,可以对 NEC 亚型、疾病进展和潜在治疗靶点进行新的解释,从而与个性化医疗方法相结合。在这篇综述中,我们评估了使用组学技术和机器学习来诊断 NEC 的研究。还讨论了该领域固有的未来意义和挑战。