Suppr超能文献

[新生儿坏死性小肠结肠炎诊断与治疗中机器学习的最新研究]

[Recent research on machine learning in the diagnosis and treatment of necrotizing enterocolitis in neonates].

作者信息

Cui Cheng, Chen Fei-Long, Li Lu-Quan

机构信息

Department of Neonatology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China.

出版信息

Zhongguo Dang Dai Er Ke Za Zhi. 2023 Jul 15;25(7):767-773. doi: 10.7499/j.issn.1008-8830.2302165.

Abstract

Necrotizing enterocolitis (NEC), with the main manifestations of bloody stool, abdominal distension, and vomiting, is one of the leading causes of death in neonates, and early identification and diagnosis are crucial for the prognosis of NEC. The emergence and development of machine learning has provided the potential for early, rapid, and accurate identification of this disease. This article summarizes the algorithms of machine learning recently used in NEC, analyzes the high-risk predictive factors revealed by these algorithms, evaluates the ability and characteristics of machine learning in the etiology, definition, and diagnosis of NEC, and discusses the challenges and prospects for the future application of machine learning in NEC.

摘要

坏死性小肠结肠炎(NEC)主要表现为血便、腹胀和呕吐,是新生儿死亡的主要原因之一,早期识别和诊断对NEC的预后至关重要。机器学习的出现和发展为早期、快速、准确地识别这种疾病提供了可能。本文总结了近期用于NEC的机器学习算法,分析了这些算法所揭示的高危预测因素,评估了机器学习在NEC病因、定义及诊断方面的能力和特点,并探讨了机器学习在NEC未来应用中的挑战与前景。

相似文献

1
[Recent research on machine learning in the diagnosis and treatment of necrotizing enterocolitis in neonates].
Zhongguo Dang Dai Er Ke Za Zhi. 2023 Jul 15;25(7):767-773. doi: 10.7499/j.issn.1008-8830.2302165.
2
Biomarkers of necrotizing enterocolitis in the era of machine learning and omics.
Semin Perinatol. 2023 Feb;47(1):151693. doi: 10.1016/j.semperi.2022.151693. Epub 2022 Dec 21.
4
A Review of the Diagnosis and Treatment of Necrotizing Enterocolitis.
Curr Pediatr Rev. 2023;19(3):285-295. doi: 10.2174/1573396318666220805110947.
5
The ConNECtion Between Abdominal Signs and Necrotizing Enterocolitis in Infants 501 to 1500 g.
Adv Neonatal Care. 2017 Feb;17(1):53-64. doi: 10.1097/ANC.0000000000000345.
6
Clinical significance of positive fecal occult blood test in neonates.
Sci Rep. 2019 Nov 29;9(1):17898. doi: 10.1038/s41598-019-54511-5.
7
Challenges in diagnosing necrotizing enterocolitis.
Pediatr Res. 2020 Aug;88(Suppl 1):16-20. doi: 10.1038/s41390-020-1090-4.
9
[Clinical guidelines for the diagnosis and treatment of neonatal necrotizing enterocolitis (2020)].
Zhongguo Dang Dai Er Ke Za Zhi. 2021 Jan;23(1):1-11. doi: 10.7499/j.issn.1008-8830.2011145.
10
Reduction in regulatory T cells in preterm newborns is associated with necrotizing enterocolitis.
Pediatr Res. 2023 Nov;94(5):1789-1796. doi: 10.1038/s41390-023-02658-3. Epub 2023 Jun 21.

本文引用的文献

2
Evaluation of blood glucose level control in type 1 diabetic patients using deep reinforcement learning.
PLoS One. 2022 Sep 13;17(9):e0274608. doi: 10.1371/journal.pone.0274608. eCollection 2022.
3
Fast Sparse Decision Tree Optimization via Reference Ensembles.
Proc AAAI Conf Artif Intell. 2022;36(9):9604-9613. doi: 10.1609/aaai.v36i9.21194. Epub 2022 Jun 28.
6
A mini-review of advances in intestinal flora and necrotizing enterocolitis.
Lett Appl Microbiol. 2022 Jul;75(1):2-9. doi: 10.1111/lam.13670. Epub 2022 Mar 2.
7
Enterprise Risk Assessment Based on Machine Learning.
Comput Intell Neurosci. 2021 Nov 16;2021:6049195. doi: 10.1155/2021/6049195. eCollection 2021.
8
Believing in black boxes: machine learning for healthcare does not need explainability to be evidence-based.
J Clin Epidemiol. 2022 Feb;142:252-257. doi: 10.1016/j.jclinepi.2021.11.001. Epub 2021 Nov 5.
9
Definitions of necrotizing enterocolitis: What are we defining and is machine learning the answer?
Pediatr Res. 2022 Feb;91(3):488-489. doi: 10.1038/s41390-021-01687-0. Epub 2021 Aug 31.
10
Ethics of Artificial Intelligence in Medicine and Ophthalmology.
Asia Pac J Ophthalmol (Phila). 2021;10(3):289-298. doi: 10.1097/APO.0000000000000397.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验