Suppr超能文献

三阶基元足以充分且唯一地表征时空神经网络活动。

Third-order motifs are sufficient to fully and uniquely characterize spatiotemporal neural network activity.

机构信息

Medical Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA.

Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.

出版信息

Sci Rep. 2023 Jan 5;13(1):238. doi: 10.1038/s41598-022-27188-6.

Abstract

Neuroscientific analyses balance between capturing the brain's complexity and expressing that complexity in meaningful and understandable ways. Here we present a novel approach that fully characterizes neural network activity and does so by uniquely transforming raw signals into easily interpretable and biologically relevant metrics of network behavior. We first prove that third-order (triple) correlation describes network activity in its entirety using the triple correlation uniqueness theorem. Triple correlation quantifies the relationships among three events separated by spatial and temporal lags, which are triplet motifs. Classifying these motifs by their event sequencing leads to fourteen qualitatively distinct motif classes that embody well-studied network behaviors including synchrony, feedback, feedforward, convergence, and divergence. Within these motif classes, the summed triple correlations provide novel metrics of network behavior, as well as being inclusive of commonly used analyses. We demonstrate the power of this approach on a range of networks with increasingly obscured signals, from ideal noiseless simulations to noisy experimental data. This approach can be easily applied to any recording modality, so existing neural datasets are ripe for reanalysis. Triple correlation is an accessible signal processing tool with a solid theoretical foundation capable of revealing previously elusive information within recordings of neural networks.

摘要

神经科学分析需要在捕捉大脑的复杂性和以有意义且易于理解的方式表达这种复杂性之间取得平衡。在这里,我们提出了一种新颖的方法,可以通过将原始信号独特地转换为易于解释和具有生物学相关性的网络行为度量,来全面描述神经网络活动。我们首先使用三重相关唯一性定理证明了三阶(三重)相关可以完全描述网络活动。三重相关量化了通过空间和时间延迟分离的三个事件之间的关系,这些事件是三联体模式。通过对这些模式的事件序列进行分类,可以得到十四个具有不同性质的模式类别,其中包括同步、反馈、前馈、汇聚和发散等经过充分研究的网络行为。在这些模式类别中,总和三重相关提供了网络行为的新度量,并且包括常用的分析方法。我们在一系列信号越来越模糊的网络上展示了这种方法的强大功能,从理想的无噪声模拟到嘈杂的实验数据。这种方法可以轻松应用于任何记录模式,因此现有的神经数据集非常适合重新分析。三重相关是一种易于使用的信号处理工具,具有坚实的理论基础,能够揭示神经网络记录中以前难以捉摸的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd3/9816122/58b0181bc6da/41598_2022_27188_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验