Tõlgo Monika, Hegnar Olav A, Larsbrink Johan, Vilaplana Francisco, Eijsink Vincent G H, Olsson Lisbeth
Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
Wallenberg Wood Science Centre, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
Biotechnol Biofuels Bioprod. 2023 Jan 5;16(1):2. doi: 10.1186/s13068-022-02255-2.
Previous studies have revealed that some Auxiliary Activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) oxidize and degrade certain types of xylans when incubated with mixtures of xylan and cellulose. Here, we demonstrate that the xylanolytic activities of two xylan-active LPMOs, TtLPMO9E and TtLPMO9G from Thermothielavioides terrestris, strongly depend on the presence of xylan substitutions.
Using mixtures of phosphoric acid-swollen cellulose (PASC) and wheat arabinoxylan (WAX), we show that removal of arabinosyl substitutions with a GH62 arabinofuranosidase resulted in better adsorption of xylan to cellulose, and enabled LPMO-catalyzed cleavage of this xylan. Furthermore, experiments with mixtures of PASC and arabinoglucuronoxylan from spruce showed that debranching of xylan with the GH62 arabinofuranosidase and a GH115 glucuronidase promoted LPMO activity. Analyses of mixtures with PASC and (non-arabinosylated) beechwood glucuronoxylan showed that GH115 action promoted LPMO activity also on this xylan. Remarkably, when WAX was incubated with Avicel instead of PASC in the presence of the GH62, both xylan and cellulose degradation by the LPMO9 were impaired, showing that the formation of cellulose-xylan complexes and their susceptibility to LPMO action also depend on the properties of the cellulose. These debranching effects not only relate to modulation of the cellulose-xylan interaction, which influences the conformation and rigidity of the xylan, but likely also affect the LPMO-xylan interaction, because debranching changes the architecture of the xylan surface.
Our results shed new light on xylanolytic LPMO9 activity and on the functional interplay and possible synergies between the members of complex lignocellulolytic enzyme cocktails. These findings will be relevant for the development of future lignocellulolytic cocktails and biomaterials.
先前的研究表明,一些辅助活性家族9(AA9)的裂解多糖单加氧酶(LPMO)在与木聚糖和纤维素的混合物一起孵育时,会氧化并降解某些类型的木聚糖。在此,我们证明了来自土栖嗜热毁丝霉的两种具有木聚糖活性的LPMO,即TtLPMO9E和TtLPMO9G的木聚糖分解活性,强烈依赖于木聚糖取代基的存在。
使用磷酸膨胀纤维素(PASC)和小麦阿拉伯木聚糖(WAX)的混合物,我们表明用GH62阿拉伯呋喃糖苷酶去除阿拉伯糖基取代基可使木聚糖更好地吸附到纤维素上,并使LPMO催化裂解该木聚糖。此外,用PASC和云杉阿拉伯糖葡萄糖醛酸木聚糖的混合物进行的实验表明,用GH62阿拉伯呋喃糖苷酶和GH115葡萄糖醛酸酶对木聚糖进行去分支可促进LPMO活性。对PASC和(非阿拉伯糖基化的)山毛榉木葡萄糖醛酸木聚糖混合物的分析表明,GH115的作用也促进了该木聚糖上的LPMO活性。值得注意的是,当在GH62存在下将WAX与微晶纤维素而不是PASC一起孵育时,LPMO9对木聚糖和纤维素的降解均受到损害,这表明纤维素 - 木聚糖复合物的形成及其对LPMO作用的敏感性也取决于纤维素的性质。这些去分支效应不仅与纤维素 - 木聚糖相互作用的调节有关,这会影响木聚糖的构象和刚性,而且可能还会影响LPMO - 木聚糖相互作用,因为去分支会改变木聚糖表面的结构。
我们的结果为木聚糖分解LPMO9活性以及复杂木质纤维素酶混合物成员之间的功能相互作用和可能的协同作用提供了新的见解。这些发现将与未来木质纤维素酶混合物和生物材料的开发相关。