Suppr超能文献

铜的第二配位层对细菌裂解性多糖单加氧酶催化性能和底物特异性的影响

Impact of the Copper Second Coordination Sphere on Catalytic Performance and Substrate Specificity of a Bacterial Lytic Polysaccharide Monooxygenase.

作者信息

Hall Kelsi R, Mollatt Maja, Forsberg Zarah, Golten Ole, Schwaiger Lorenz, Ludwig Roland, Ayuso-Fernández Iván, Eijsink Vincent G H, Sørlie Morten

机构信息

Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway.

School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.

出版信息

ACS Omega. 2024 May 15;9(21):23040-23052. doi: 10.1021/acsomega.4c02666. eCollection 2024 May 28.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, using a single copper cofactor bound in a conserved histidine brace with a more variable second coordination sphere. Cellulose-active LPMOs in the fungal AA9 family and in a subset of bacterial AA10 enzymes contain a His-Gln-Tyr second sphere motif, whereas other cellulose-active AA10s have an Arg-Glu-Phe motif. To shine a light on the impact of this variation, we generated single, double, and triple mutations changing the His-Gln-Tyr motif in cellulose- and chitin-oxidizing AA10B toward Arg-Glu-Phe. These mutations generally reduced enzyme performance due to rapid inactivation under turnover conditions, showing that catalytic fine-tuning of the histidine brace is complex and that the roles of these second sphere residues are strongly interconnected. Studies of copper reactivity showed remarkable effects, such as an increase in oxidase activity following the Q219E mutation and a strong dependence of this effect on the presence of Tyr at position 221. In reductant-driven reactions, differences in oxidase activity, which lead to different levels of in situ generated HO, correlated with differences in polysaccharide-degrading ability. The single Q219E mutant displayed a marked increase in activity on chitin in both reductant-driven reactions and reactions fueled by exogenously added HO. Thus, it seems that the evolution of substrate specificity in LPMOs involves both the extended substrate-binding surface and the second coordination sphere.

摘要

裂解多糖单加氧酶(LPMOs)利用结合在保守组氨酸支架中的单个铜辅因子催化顽固多糖(如纤维素和几丁质)中糖苷键的氧化裂解,其第二配位层变化较大。真菌AA9家族和细菌AA10酶的一个亚组中的纤维素活性LPMOs含有His-Gln-Tyr第二配位层基序,而其他纤维素活性AA10s具有Arg-Glu-Phe基序。为了阐明这种变异的影响,我们对纤维素和几丁质氧化AA10B中改变His-Gln-Tyr基序为Arg-Glu-Phe的单、双和三突变体进行了研究。这些突变通常会降低酶的性能,因为在周转条件下会快速失活,这表明组氨酸支架的催化微调很复杂,并且这些第二配位层残基的作用紧密相连。铜反应性研究显示出显著影响,例如Q219E突变后氧化酶活性增加,并且这种影响强烈依赖于221位酪氨酸的存在。在还原剂驱动的反应中,氧化酶活性的差异导致原位生成的HO水平不同,这与多糖降解能力的差异相关。单Q219E突变体在还原剂驱动的反应和外源添加HO驱动的反应中对几丁质的活性均显著增加。因此,LPMOs底物特异性的进化似乎涉及扩展的底物结合表面和第二配位层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d247/11137697/b4799737a284/ao4c02666_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验