School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China.
Multi-Scale Medical Robotics Center Limited, Hong Kong, China.
Sci Rep. 2023 Jan 6;13(1):330. doi: 10.1038/s41598-023-27633-0.
To achieve accurate contour tracking of robotic manipulators with system uncertainties, external disturbance and actuator faults, a cross-coupling contour adaptive nonsingular terminal sliding mode control (CCCANTSMC) is proposed. A nonsingular terminal sliding mode manifold is developed which eliminates the singularity completely. In order to avoid the demand of the prior knowledge of system uncertainties, external disturbance and actuator faults in practical applications, an adaptive tuning approach is proposed. The stability of the proposed control strategy is demonstrated by the finite-time stability theory. Then, the developed controller combines adaptive nonlinear terminal sliding mode control (ANTSMC) of joint trajectory tracking and proportion-differentiation control of end-effector contour tracking by introducing the coupling factor between multiple axes based on Jacobian. Moreover, a unified framework of cross-coupling contour compensation and reference position pre-compensation is built. Finally, numerical simulation and experimental results validate the effectiveness of the proposed control strategy.
为实现具有系统不确定性、外部干扰和执行器故障的机器人机械手的精确轮廓跟踪,提出了一种交叉耦合轮廓自适应非奇异终端滑模控制(CCCANTSMC)。开发了一种非奇异终端滑模流形,该流形完全消除了奇异性。为了避免在实际应用中对系统不确定性、外部干扰和执行器故障的先验知识的需求,提出了一种自适应调整方法。通过有限时间稳定性理论证明了所提出控制策略的稳定性。然后,所开发的控制器通过基于雅可比的多个轴之间的耦合因子,将关节轨迹跟踪的自适应非线性终端滑模控制(ANTSMC)和末端执行器轮廓跟踪的比例微分控制相结合。此外,建立了交叉耦合轮廓补偿和参考位置预补偿的统一框架。最后,数值模拟和实验结果验证了所提出控制策略的有效性。