Zhang Haichao, Li Bo, Xiao Bing, Yang Yongsheng, Ling Jun
Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China.
School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.
ISA Trans. 2022 Nov;130:553-564. doi: 10.1016/j.isatra.2022.04.021. Epub 2022 Apr 19.
This work investigates the problem of fast tracking control for a class of high-order nonlinear systems subject to the matched disturbances. More particularly, a novel practical fixed-time disturbance observer is first presented by using a smooth hyperbolic tangent function. Then, a new nonsingular recursive-structure sliding mode surface is proposed based on the terminal sliding mode surface. With the reconstructed information deriving from the designed disturbance observer, a nonsingular recursive-structure sliding mode based finite-time tracking control approach incorporating with a new adaptive law is proposed to ensure the tracking errors converge to a small region of the origin in finite time. The finite-time stability of the closed-loop tracking control system driven by the proposed control scheme is analyzed and proved utilizing Lyapunov theory. And also, the proposed generalized control approach is applied to a mobile robotic experimental platform to achieve accurate trajectory tracking on the uneven ground. Finally, the numerical simulation and comparative experiment results demonstrate the effectiveness and superiority of the proposed approach.
本文研究了一类受匹配干扰的高阶非线性系统的快速跟踪控制问题。具体而言,首先利用光滑双曲正切函数提出了一种新颖的实用固定时间干扰观测器。然后,基于终端滑模面提出了一种新的非奇异递归结构滑模面。利用所设计干扰观测器重构的信息,提出了一种结合新自适应律的基于非奇异递归结构滑模的有限时间跟踪控制方法,以确保跟踪误差在有限时间内收敛到原点的一个小区域。利用李雅普诺夫理论对所提控制方案驱动的闭环跟踪控制系统的有限时间稳定性进行了分析和证明。此外,将所提广义控制方法应用于移动机器人实验平台,以在不平地面上实现精确的轨迹跟踪。最后,数值仿真和对比实验结果验证了所提方法的有效性和优越性。