Singh Aditya Narayan, Hajibabaei Amir, Ha Miran, Meena Abhishek, Kim Hyun-Seok, Bathula Chinna, Nam Kyung-Wan
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea.
Nanomaterials (Basel). 2022 Dec 20;13(1):10. doi: 10.3390/nano13010010.
Cation-disordered rocksalt (DRX) cathodes have been viewed as next-generation high-energy density materials surpassing conventional layered cathodes for lithium-ion battery (LIB) technology. Utilizing the opportunity of a better cation mixing facility in DRX, we synthesize Na-doped DRX as an efficient electrocatalyst toward oxygen evolution reaction (OER). This novel OER electrocatalyst generates a current density of 10 mA cm−2 at an overpotential (η) of 270 mV, Tafel slope of 67.5 mV dec−1, and long-term stability >5.5 days’ superior to benchmark IrO2 (η = 330 mV with Tafel slope = 74.8 mV dec−1). This superior electrochemical behavior is well supported by experiment and sparse Gaussian process potential (SGPP) machine learning-based search for minimum energy structure. Moreover, as oxygen binding energy (OBE) on the surface closely relates to OER activity, our density functional theory (DFT) calculations reveal that Na-doping assists in facile O2 evolution (OBE = 5.45 eV) compared with pristine-DRX (6.51 eV).
阳离子无序岩盐(DRX)阴极被视为超越传统层状阴极的下一代锂离子电池(LIB)技术的高能量密度材料。利用DRX中更好的阳离子混合特性,我们合成了钠掺杂的DRX作为析氧反应(OER)的高效电催化剂。这种新型OER电催化剂在270 mV的过电位(η)下产生10 mA cm−2的电流密度,塔菲尔斜率为67.5 mV dec−1,长期稳定性>5.5天,优于基准IrO2(η = 330 mV,塔菲尔斜率 = 74.8 mV dec−1)。这种优异的电化学行为得到了实验和基于稀疏高斯过程势(SGPP)机器学习的最低能量结构搜索的有力支持。此外,由于表面的氧结合能(OBE)与OER活性密切相关,我们的密度泛函理论(DFT)计算表明,与原始DRX(6.51 eV)相比,钠掺杂有助于轻松析氧(OBE = 5.45 eV)。