Suppr超能文献

基于 Tsfresh 和机器学习生存模型的小型水力发电厂预测的数据驱动框架。

A Data-Driven Framework for Small Hydroelectric Plant Prognosis Using Tsfresh and Machine Learning Survival Models.

机构信息

Graduate Program in Industrial Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.

Department of Industrial Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.

出版信息

Sensors (Basel). 2022 Dec 20;23(1):12. doi: 10.3390/s23010012.

Abstract

Maintenance in small hydroelectric plants (SHPs) is essential for securing the expansion of clean energy sources and supplying the energy estimated to be required for the coming years. Identifying failures in SHPs before they happen is crucial for allowing better management of asset maintenance, lowering operating costs, and enabling the expansion of renewable energy sources. Most fault prognosis models proposed thus far for hydroelectric generating units are based on signal decomposition and regression models. In the specific case of SHPs, there is a high occurrence of data being censored, since the operation is not consistently steady and can be repeatedly interrupted due to transmission problems or scarcity of water resources. To overcome this, we propose a two-step, data-driven framework for SHP prognosis based on time series feature engineering and survival modeling. We compared two different strategies for feature engineering: one using higher-order statistics and the other using the Tsfresh algorithm. We adjusted three machine learning survival models-CoxNet, survival random forests, and gradient boosting survival analysis-for estimating the concordance index of these approaches. The best model presented a significant concordance index of 77.44%. We further investigated and discussed the importance of the monitored sensors and the feature extraction aggregations. The kurtosis and variance were the most relevant aggregations in the higher-order statistics domain, while the fast Fourier transform and continuous wavelet transform were the most frequent transformations when using Tsfresh. The most important sensors were related to the temperature at several points, such as the bearing generator, oil hydraulic unit, and turbine radial bushing.

摘要

在小水电站 (SHP) 进行维护对于确保清洁能源的扩展和供应预计未来几年所需的能源至关重要。在故障发生之前识别出 SHP 中的故障对于更好地管理资产维护、降低运营成本和扩大可再生能源至关重要。迄今为止,为水力发电机组提出的大多数故障预测模型都是基于信号分解和回归模型。在 SHP 的具体情况下,由于操作不是始终稳定的,并且由于传输问题或水资源短缺,操作可能会反复中断,因此数据被删失的情况很常见。为了克服这个问题,我们提出了一种基于时间序列特征工程和生存模型的两步、数据驱动的 SHP 预测框架。我们比较了两种不同的特征工程策略:一种使用高阶统计量,另一种使用 Tsfresh 算法。我们调整了三种机器学习生存模型 - CoxNet、生存随机森林和梯度提升生存分析 - 来估计这些方法的一致性指数。表现最好的模型呈现出显著的一致性指数 77.44%。我们进一步研究和讨论了监测传感器和特征提取聚合的重要性。在高阶统计量域中,峰度和方差是最重要的聚合,而在使用 Tsfresh 时,快速傅里叶变换和连续小波变换是最常见的变换。最重要的传感器与几个点的温度有关,例如轴承发电机、油液液压单元和涡轮径向轴衬。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aa0/9824278/672654165ad2/sensors-23-00012-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验