Suppr超能文献

通过混合特征选择使用多个分类器预测血管内主动脉瘤修复再干预的风险。

Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

作者信息

Attallah Omneya, Karthikesalingam Alan, Holt Peter Je, Thompson Matthew M, Sayers Rob, Bown Matthew J, Choke Eddie C, Ma Xianghong

机构信息

1 Department of Electronics and Communications, College of Engineering and Technology, Arab Academy for Science and Technology, Alexandria, Egypt.

2 School of Engineering and Applied Science, Aston University, Birmingham, UK.

出版信息

Proc Inst Mech Eng H. 2017 Nov;231(11):1048-1063. doi: 10.1177/0954411917731592. Epub 2017 Sep 19.

Abstract

Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.

摘要

特征选择在医学领域至关重要;然而,由于删失的存在,其过程变得复杂,删失是生存分析的独特特征。大多数生存特征选择方法基于Cox比例风险模型,尽管机器学习分类器更受青睐。由于删失会阻止它们直接用于生存数据,因此它们在生存分析中的应用较少。在少数使用机器学习分类器的工作中,具有自动相关性确定的部分逻辑人工神经网络是一种处理删失并对生存数据进行特征选择的知名方法。然而,它依赖于数据复制来处理删失,这会导致预测结果不平衡和有偏差,尤其是在高度删失的数据中。其他方法无法处理高度删失的情况。因此,在本文中,提出了一种新的混合特征选择方法,该方法为高度删失问题提供了一种解决方案。它使用简单多数投票以及基于生存度量的新加权多数投票方法,将支持向量机、神经网络和K近邻分类器相结合,构建一个多分类器系统。新的混合特征选择过程将多分类器系统用作一种包装方法,并将其与迭代特征排序过滤方法合并,以进一步减少特征。使用从两个中心收集的包含91%删失患者的两个血管内主动脉修复数据集构建了一项多中心研究,以评估所提出方法的性能。结果表明,在对数秩检验的p值、敏感性和一致性指数方面,所提出的技术优于单个分类器以及基于Cox模型的变量选择方法,如赤池和贝叶斯信息准则以及最小绝对收缩和选择算子。这表明所提出的分类器在正确预测再次干预风险方面更强大,能够帮助医生选择患者未来的随访计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验