Suppr超能文献

机器学习辅助集成分析用于预测卵巢癌老年患者细胞减灭术后的尿路感染

Machine learning-assisted ensemble analysis for the prediction of urinary tract infection in elderly patients with ovarian cancer after cytoreductive surgery.

作者信息

Ai Jiao, Hu Yao, Zhou Fang-Fang, Liao Yi-Xiang, Yang Tao

机构信息

Department of Urology, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.

Department of Obstetrics and Gynaecology, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.

出版信息

World J Clin Oncol. 2022 Dec 24;13(12):967-979. doi: 10.5306/wjco.v13.i12.967.

Abstract

BACKGROUND

Urinary tract infection (UTI) is a common type of postoperative infection following cytoreductive surgery for ovarian cancer, which severely impacts the prognosis and quality of life of patients.

AIM

To develop a machine learning assistant model for the prevention and control of nosocomial infection.

METHODS

A total of 674 elderly patients with ovarian cancer who were treated at the Department of Gynaecology at Jingzhou Central Hospital between January 31, 2016 and January 31, 2022 and met the inclusion criteria of the study were selected as the research subjects. A retrospective analysis of the postoperative UTI and related factors was performed by reviewing the medical records. Five machine learning-assisted models were developed using two-step estimation methods from the candidate predictive variables. The robustness and clinical applicability of each model were assessed using the receiver operating characteristic curve, decision curve analysis and clinical impact curve.

RESULTS

A total of 12 candidate variables were eventually included in the UTI prediction model. Models constructed using the random forest classifier, support vector machine, extreme gradient boosting, and artificial neural network and decision tree had areas under the receiver operating characteristic curve ranging from 0.776 to 0.925. The random forest classifier model, which incorporated factors such as age, body mass index, catheter, catheter intubation times, blood loss, diabetes and hypoproteinaemia, had the highest predictive accuracy.

CONCLUSION

These findings demonstrate that the machine learning-based prediction model developed using the random forest classifier can be used to identify elderly patients with ovarian cancer who may have postoperative UTI. This can help with treatment decisions and enhance clinical outcomes.

摘要

背景

尿路感染(UTI)是卵巢癌减瘤手术后常见的一种术后感染类型,严重影响患者的预后和生活质量。

目的

建立一种用于预防和控制医院感染的机器学习辅助模型。

方法

选取2016年1月31日至2022年1月31日在荆州市中心医院妇科接受治疗且符合本研究纳入标准的674例老年卵巢癌患者作为研究对象。通过查阅病历对术后UTI及相关因素进行回顾性分析。从候选预测变量中采用两步估计法建立了5种机器学习辅助模型。使用受试者工作特征曲线、决策曲线分析和临床影响曲线评估每个模型的稳健性和临床适用性。

结果

UTI预测模型最终共纳入12个候选变量。使用随机森林分类器、支持向量机、极端梯度提升、人工神经网络和决策树构建的模型,其受试者工作特征曲线下面积在0.776至0.925之间。纳入年龄、体重指数、导尿管、导尿次数、失血量、糖尿病和低蛋白血症等因素的随机森林分类器模型预测准确率最高。

结论

这些结果表明,使用随机森林分类器开发的基于机器学习的预测模型可用于识别可能发生术后UTI的老年卵巢癌患者。这有助于治疗决策并改善临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e9/9813835/78d1b5d8ed43/WJCO-13-967-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验