Suppr超能文献

老年发病类风湿关节炎患者骨折风险预测机器学习模型的开发与验证

Development and Validation of Machine Learning Models for Prediction of Fracture Risk in Patients with Elderly-Onset Rheumatoid Arthritis.

作者信息

Chen Renming, Huang Qin, Chen Lihua

机构信息

Department of Nephropathy and Rheumatology,The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People's Republic of China.

出版信息

Int J Gen Med. 2022 Oct 14;15:7817-7829. doi: 10.2147/IJGM.S380197. eCollection 2022.

Abstract

OBJECTIVE

Fracture is a critical unfavorable prognostic factor in patients with rheumatoid arthritis(RA) and osteoporosis. At present, models involving clinical indices that accurately predict fracture are still uncommon. We addressed this gap by developing machine learning (ML)-based predictive models to individualize the risk of fracture in elderly patients with RA and osteoporosis and to identify a high-risk group for fracture.

METHODS

487 patients diagnosed with RA and osteoporosis at the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture were randomly divided into a training cohort (used for building the model) and a validation cohort (used for validating the model). Five ML-assisted models were developed from candidate clinical features using two-step estimation methods. The receiver operating characteristic curve (ROC), decision curve analysis (DCA), and clinical impact curve (CIC) were performed to evaluate the robustness and clinical practicability of each model.

RESULTS

A total of twenty-two candidate variables were included, and the prediction model was established by an ML-based algorithm. The areas under the ROC curve (AUCs) of the random forest classifier (RFC) model, artificial neural network (ANN), support vector machine (SVM), eXtreme gradient boosting (XGBoost), decision tree (DT), probability of major osteoporotic fractures (PMOF), and probability of hip fracture (PHF) ranged from 0.695 to 0.878. Among them, RFC obtained the optimal prediction efficiency via adding serum selenium and clinical indices, that is, glucocorticoid, and erythrocyte sedimentation rate (ESR).

CONCLUSION

Based on the classic clinical parameters, the fracture risk of RA patients with osteoporosis can be accurately predicted. In particular, RFC prediction model shows good discrimination ability in identifying high-risk patients with fracture.

摘要

目的

骨折是类风湿关节炎(RA)和骨质疏松症患者的一个关键不良预后因素。目前,涉及准确预测骨折的临床指标的模型仍然很少见。我们通过开发基于机器学习(ML)的预测模型来解决这一差距,以个体化RA和骨质疏松症老年患者的骨折风险,并识别骨折高危组。

方法

将恩施土家族苗族自治州中心医院诊断为RA和骨质疏松症的487例患者随机分为训练队列(用于构建模型)和验证队列(用于验证模型)。使用两步估计方法从候选临床特征中开发了五个ML辅助模型。进行了受试者操作特征曲线(ROC)、决策曲线分析(DCA)和临床影响曲线(CIC)以评估每个模型的稳健性和临床实用性。

结果

共纳入22个候选变量,通过基于ML的算法建立了预测模型。随机森林分类器(RFC)模型、人工神经网络(ANN)、支持向量机(SVM)、极端梯度提升(XGBoost)、决策树(DT)、主要骨质疏松性骨折概率(PMOF)和髋部骨折概率(PHF)的ROC曲线下面积(AUC)范围为0.695至0.878。其中,RFC通过添加血清硒和临床指标,即糖皮质激素和红细胞沉降率(ESR),获得了最佳预测效率。

结论

基于经典临床参数,可以准确预测RA合并骨质疏松症患者的骨折风险。特别是,RFC预测模型在识别骨折高危患者方面显示出良好的辨别能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9295/9581722/30182ba494c6/IJGM-15-7817-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验