Suppr超能文献

使结构化医学和医疗保健数据匿名化的算法:一项系统综述。

Algorithms to anonymize structured medical and healthcare data: A systematic review.

作者信息

Sepas Ali, Bangash Ali Haider, Alraoui Omar, El Emam Khaled, El-Hussuna Alaa

机构信息

Open Source Research Collaboration, Aalborg, Denmark.

Department of Materials and Production, Aalborg University, Aalborg, Denmark.

出版信息

Front Bioinform. 2022 Dec 22;2:984807. doi: 10.3389/fbinf.2022.984807. eCollection 2022.

Abstract

With many anonymization algorithms developed for structured medical health data (SMHD) in the last decade, our systematic review provides a comprehensive bird's eye view of algorithms for SMHD anonymization. This systematic review was conducted according to the recommendations in the Cochrane Handbook for Reviews of Interventions and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Eligible articles from the PubMed, ACM digital library, Medline, IEEE, Embase, Web of Science Collection, Scopus, ProQuest Dissertation, and Theses Global databases were identified through systematic searches. The following parameters were extracted from the eligible studies: author, year of publication, sample size, and relevant algorithms and/or software applied to anonymize SMHD, along with the summary of outcomes. Among 1,804 initial hits, the present study considered 63 records including research articles, reviews, and books. Seventy five evaluated the anonymization of demographic data, 18 assessed diagnosis codes, and 3 assessed genomic data. One of the most common approaches was k-anonymity, which was utilized mainly for demographic data, often in combination with another algorithm; e.g., l-diversity. No approaches have yet been developed for protection against membership disclosure attacks on diagnosis codes. This study reviewed and categorized different anonymization approaches for MHD according to the anonymized data types (demographics, diagnosis codes, and genomic data). Further research is needed to develop more efficient algorithms for the anonymization of diagnosis codes and genomic data. The risk of reidentification can be minimized with adequate application of the addressed anonymization approaches. : [http://www.crd.york.ac.uk/prospero], identifier [CRD42021228200].

摘要

在过去十年中,针对结构化医疗卫生数据(SMHD)开发了许多匿名化算法,我们的系统评价全面概述了SMHD匿名化算法。本系统评价是根据《Cochrane干预措施评价手册》中的建议进行的,并按照系统评价和Meta分析的首选报告项目(PRISMA)进行报告。通过系统检索,从PubMed、ACM数字图书馆、Medline、IEEE、Embase、科学引文索引数据库、Scopus、ProQuest学位论文和全球学位论文数据库中识别出符合条件的文章。从符合条件的研究中提取了以下参数:作者、发表年份、样本量、用于匿名化SMHD的相关算法和/或软件,以及结果总结。在1804条初始命中记录中,本研究纳入了63条记录,包括研究文章、综述和书籍。75项评估了人口统计数据的匿名化,18项评估了诊断代码,3项评估了基因组数据。最常见的方法之一是k匿名,主要用于人口统计数据,通常与另一种算法结合使用;例如,l多样性。尚未开发出针对诊断代码的成员披露攻击的保护方法。本研究根据匿名化数据类型(人口统计学、诊断代码和基因组数据)对MHD的不同匿名化方法进行了综述和分类。需要进一步研究以开发更有效的诊断代码和基因组数据匿名化算法。通过充分应用所讨论的匿名化方法,可以将重新识别的风险降至最低。:[http://www.crd.york.ac.uk/prospero],标识符[CRD42021228200]。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a78/9815524/cad7e39dfece/fbinf-02-984807-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验