Suppr超能文献

实验生物医学研究中数据管理和共享的最佳实践。

Best practices for data management and sharing in experimental biomedical research.

机构信息

Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

出版信息

Physiol Rev. 2024 Jul 1;104(3):1387-1408. doi: 10.1152/physrev.00043.2023. Epub 2024 Mar 7.

Abstract

Effective data management is crucial for scientific integrity and reproducibility, a cornerstone of scientific progress. Well-organized and well-documented data enable validation and building on results. Data management encompasses activities including organization, documentation, storage, sharing, and preservation. Robust data management establishes credibility, fostering trust within the scientific community and benefiting researchers' careers. In experimental biomedicine, comprehensive data management is vital due to the typically intricate protocols, extensive metadata, and large datasets. Low-throughput experiments, in particular, require careful management to address variations and errors in protocols and raw data quality. Transparent and accountable research practices rely on accurate documentation of procedures, data collection, and analysis methods. Proper data management ensures long-term preservation and accessibility of valuable datasets. Well-managed data can be revisited, contributing to cumulative knowledge and potential new discoveries. Publicly funded research has an added responsibility for transparency, resource allocation, and avoiding redundancy. Meeting funding agency expectations increasingly requires rigorous methodologies, adherence to standards, comprehensive documentation, and widespread sharing of data, code, and other auxiliary resources. This review provides critical insights into raw and processed data, metadata, high-throughput versus low-throughput datasets, a common language for documentation, experimental and reporting guidelines, efficient data management systems, sharing practices, and relevant repositories. We systematically present available resources and optimal practices for wide use by experimental biomedical researchers.

摘要

有效的数据管理对于科学诚信和可重复性至关重要,是科学进步的基石。组织良好且记录完备的数据可实现结果的验证和扩展。数据管理包括组织、记录、存储、共享和保存等活动。稳健的数据管理建立了可信度,在科学界内部培养了信任,并有益于研究人员的职业发展。在实验生物医学中,由于典型的复杂方案、大量元数据和大型数据集,全面的数据管理至关重要。特别是低通量实验需要仔细管理,以解决方案和原始数据质量中的变化和错误。透明和负责任的研究实践依赖于程序、数据收集和分析方法的准确记录。适当的数据管理可确保有价值数据集的长期保存和可访问性。管理良好的数据可以重新访问,为累积知识和潜在新发现做出贡献。公共资助的研究除了要透明、合理分配资源外,还要避免重复。为了满足资助机构的期望,越来越需要严格的方法、遵守标准、全面的文档记录以及广泛的数据、代码和其他辅助资源共享。本综述提供了有关原始和处理后数据、元数据、高通量与低通量数据集、文档的通用语言、实验和报告指南、高效的数据管理系统、共享实践以及相关存储库的重要见解。我们系统地展示了现有的资源和最佳实践,以供实验生物医学研究人员广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd91/11380994/610bfee45608/prv-00043-2023r01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验