Suppr超能文献

MPHIA个体数据集上的因果结构学习

Causal Structural Learning on MPHIA Individual Dataset.

作者信息

Bao Le, Li Changcheng, Li Runze, Yang Songshan

机构信息

Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA.

School of Mathematical Sciences, Dalian University of Technology, Dalian, P.R. China.

出版信息

J Am Stat Assoc. 2022;117(540):1642-1655. doi: 10.1080/01621459.2022.2077209. Epub 2022 Jul 7.

Abstract

The Population-based HIV Impact Assessment (PHIA) is an ongoing project that conducts nationally representative HIV-focused surveys for measuring national and regional progress toward UNAIDS' 90-90-90 targets, the primary strategy to end the HIV epidemic. We believe the PHIA survey offers a unique opportunity to better understand the key factors that drive the HIV epidemics in the most affected countries in sub-Saharan Africa. In this article, we propose a novel causal structural learning algorithm to discover important covariates and potential causal pathways for 90-90-90 targets. Existing constrained-based causal structural learning algorithms are quite aggressive in edge removal. The proposed algorithm preserves more information about important features and potential causal pathways. It is applied to the Malawi PHIA (MPHIA) data set and leads to interesting results. For example, it discovers age and condom usage to be important for female HIV awareness; the number of sexual partners to be important for male HIV awareness; and knowing the travel time to HIV care facilities leads to a higher chance of being treated for both females and males. We further compare and validate the proposed algorithm using BIC and using Monte Carlo simulations, and show that the proposed algorithm achieves improvement in true positive rates in important feature discovery over existing algorithms.

摘要

基于人群的艾滋病影响评估(PHIA)是一个正在进行的项目,该项目开展具有全国代表性的以艾滋病为重点的调查,以衡量国家和地区在实现联合国艾滋病规划署的90-90-90目标方面取得的进展,这是终结艾滋病流行的主要战略。我们认为,PHIA调查提供了一个独特的机会,可更好地了解在撒哈拉以南非洲受影响最严重的国家中推动艾滋病流行的关键因素。在本文中,我们提出了一种新颖的因果结构学习算法,以发现与90-90-90目标相关的重要协变量和潜在因果途径。现有的基于约束的因果结构学习算法在边去除方面相当激进。所提出的算法保留了更多关于重要特征和潜在因果途径的信息。它被应用于马拉维PHIA(MPHIA)数据集,并得出了有趣的结果。例如,它发现年龄和避孕套使用情况对女性艾滋病知晓率很重要;性伴侣数量对男性艾滋病知晓率很重要;并且知道前往艾滋病治疗机构的时间会增加女性和男性接受治疗的机会。我们进一步使用贝叶斯信息准则(BIC)并通过蒙特卡洛模拟对所提出的算法进行比较和验证,并表明所提出的算法在重要特征发现方面的真阳性率比现有算法有所提高。

相似文献

1
Causal Structural Learning on MPHIA Individual Dataset.
J Am Stat Assoc. 2022;117(540):1642-1655. doi: 10.1080/01621459.2022.2077209. Epub 2022 Jul 7.
2
Probabilistic HIV recency classification-a logistic regression without labeled individual level training data.
Ann Appl Stat. 2023 Mar;17(1):108-129. doi: 10.1214/22-aoas1618. Epub 2023 Jan 24.
5
6
Use of machine learning techniques to identify HIV predictors for screening in sub-Saharan Africa.
BMC Med Res Methodol. 2021 Jul 31;21(1):159. doi: 10.1186/s12874-021-01346-2.
7
8
Towards achieving the 90-90-90 HIV targets: results from the south African 2017 national HIV survey.
BMC Public Health. 2020 Sep 9;20(1):1375. doi: 10.1186/s12889-020-09457-z.

本文引用的文献

1
Barriers and facilitators to linkage to care and ART initiation in the setting of high ART coverage in Botswana.
AIDS Care. 2020 Jun;32(6):722-728. doi: 10.1080/09540121.2019.1640843. Epub 2019 Jul 12.
5
Factors associated with HIV viral load suppression on antiretroviral therapy in Vietnam.
J Virus Erad. 2016 Apr 1;2(2):94-101. doi: 10.1016/S2055-6640(20)30466-0.
9
Substance abuse, violence, and HIV/AIDS (SAVA) syndemic effects on viral suppression among HIV positive women of color.
AIDS Patient Care STDS. 2015 Jan;29 Suppl 1(Suppl 1):S42-8. doi: 10.1089/apc.2014.0278. Epub 2014 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验