Suppr超能文献

多视角潜变量模型揭示了复杂组织中配对多模态单细胞数据的细胞异质性。

A multi-view latent variable model reveals cellular heterogeneity in complex tissues for paired multimodal single-cell data.

机构信息

School of Computer Science, Northwestern Polytechnical University, Shaanxi 710129, China.

Department of Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China.

出版信息

Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad005.

Abstract

MOTIVATION

Single-cell multimodal assays allow us to simultaneously measure two different molecular features of the same cell, enabling new insights into cellular heterogeneity, cell development and diseases. However, most existing methods suffer from inaccurate dimensionality reduction for the joint-modality data, hindering their discovery of novel or rare cell subpopulations.

RESULTS

Here, we present VIMCCA, a computational framework based on variational-assisted multi-view canonical correlation analysis to integrate paired multimodal single-cell data. Our statistical model uses a common latent variable to interpret the common source of variances in two different data modalities. Our approach jointly learns an inference model and two modality-specific non-linear models by leveraging variational inference and deep learning. We perform VIMCCA and compare it with 10 existing state-of-the-art algorithms on four paired multi-modal datasets sequenced by different protocols. Results demonstrate that VIMCCA facilitates integrating various types of joint-modality data, thus leading to more reliable and accurate downstream analysis. VIMCCA improves our ability to identify novel or rare cell subtypes compared to existing widely used methods. Besides, it can also facilitate inferring cell lineage based on joint-modality profiles.

AVAILABILITY AND IMPLEMENTATION

The VIMCCA algorithm has been implemented in our toolkit package scbean (≥0.5.0), and its code has been archived at https://github.com/jhu99/scbean under MIT license.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

单细胞多模态分析允许我们同时测量同一细胞的两种不同分子特征,从而深入了解细胞异质性、细胞发育和疾病。然而,大多数现有的方法在联合模态数据的降维方面存在不准确性,阻碍了对新的或罕见细胞亚群的发现。

结果

在这里,我们提出了 VIMCCA,这是一个基于变分辅助多视图典型相关分析的计算框架,用于整合配对的多模态单细胞数据。我们的统计模型使用一个公共潜在变量来解释两种不同数据模态中共同方差的来源。我们的方法通过利用变分推理和深度学习,共同学习一个推理模型和两个模态特定的非线性模型。我们在四个由不同方案测序的配对多模态数据集上进行了 VIMCCA 并与 10 种现有的最先进算法进行了比较。结果表明,VIMCCA 有助于整合各种类型的联合模态数据,从而导致更可靠和准确的下游分析。与现有的广泛使用的方法相比,VIMCCA 提高了我们识别新的或罕见的细胞亚型的能力。此外,它还可以基于联合模态谱推断细胞谱系。

可用性和实现

VIMCCA 算法已在我们的工具包 scbean(≥0.5.0)中实现,其代码已在 MIT 许可证下存档于 https://github.com/jhu99/scbean。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd1e/9857983/cac13ec9d1dc/btad005f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验