Suppr超能文献

scHiCyclePred:一种基于深度学习的框架,用于使用多尺度相互作用信息从单细胞 Hi-C 数据中预测细胞周期阶段。

scHiCyclePred: a deep learning framework for predicting cell cycle phases from single-cell Hi-C data using multi-scale interaction information.

机构信息

School of Software, Shandong University, Jinan, Shandong, China.

Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, China.

出版信息

Commun Biol. 2024 Jul 31;7(1):923. doi: 10.1038/s42003-024-06626-3.

Abstract

The emergence of single-cell Hi-C (scHi-C) technology has provided unprecedented opportunities for investigating the intricate relationship between cell cycle phases and the three-dimensional (3D) structure of chromatin. However, accurately predicting cell cycle phases based on scHi-C data remains a formidable challenge. Here, we present scHiCyclePred, a prediction model that integrates multiple feature sets to leverage scHi-C data for predicting cell cycle phases. scHiCyclePred extracts 3D chromatin structure features by incorporating multi-scale interaction information. The comparative analysis illustrates that scHiCyclePred surpasses existing methods such as Nagano_method and CIRCLET across various metrics including accuracy (ACC), F1 score, Precision, Recall, and balanced accuracy (BACC). In addition, we evaluate scHiCyclePred against the previously published CIRCLET using the dataset of complex tissues (Liu_dataset). Experimental results reveal significant improvements with scHiCyclePred exhibiting improvements of 0.39, 0.52, 0.52, and 0.39 over the CIRCLET in terms of ACC, F1 score, Precision, and Recall metrics, respectively. Furthermore, we conduct analyses on three-dimensional chromatin dynamics and gene features during the cell cycle, providing a more comprehensive understanding of cell cycle dynamics through chromatin structure. scHiCyclePred not only offers insights into cell biology but also holds promise for catalyzing breakthroughs in disease research. Access scHiCyclePred on GitHub at https:// github.com/HaoWuLab-Bioinformatics/ scHiCyclePred .

摘要

单细胞 Hi-C(scHi-C) 技术的出现为研究细胞周期阶段与染色质三维(3D)结构之间的复杂关系提供了前所未有的机会。然而,基于 scHi-C 数据准确预测细胞周期阶段仍然是一个艰巨的挑战。在这里,我们提出了 scHiCyclePred,这是一种预测模型,它整合了多个特征集,利用 scHi-C 数据来预测细胞周期阶段。scHiCyclePred 通过整合多尺度相互作用信息来提取 3D 染色质结构特征。比较分析表明,scHiCyclePred 在各种指标上都优于现有的方法,如 Nagano_method 和 CIRCLET,包括准确性(ACC)、F1 得分、精度、召回率和平衡准确性(BACC)。此外,我们使用复杂组织数据集(Liu_dataset)评估了针对先前发表的 CIRCLET 的 scHiCyclePred。实验结果表明,scHiCyclePred 显著提高了性能,在 ACC、F1 得分、精度和召回率方面,与 CIRCLET 相比,分别提高了 0.39、0.52、0.52 和 0.39。此外,我们还对细胞周期中三维染色质动力学和基因特征进行了分析,通过染色质结构提供了对细胞周期动力学的更全面理解。scHiCyclePred 不仅为细胞生物学提供了新的见解,而且有望推动疾病研究的突破。在 https://github.com/HaoWuLab-Bioinformatics/scHiCyclePred 上访问 scHiCyclePred。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d7/11291681/7294836ef999/42003_2024_6626_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验