School of Mechanical Engineering, Southwest Jiaotong University, Chengdu610031, China.
Institute of Applied Physics, Justus-Liebig-Universität Giessen, Giessen35392, Germany.
ACS Appl Mater Interfaces. 2023 Jan 25;15(3):4774-4780. doi: 10.1021/acsami.2c19240. Epub 2023 Jan 10.
Nanotribology using atomic force microscopy (AFM) can be considered as a unique approach to analyze phase transition materials by localized mechanical interaction. In this work, we investigate friction on the lamellar transition metal dichalcogenide 1T-TaS, which can undergo first-order charge density wave (CDW) phase transitions. Based on temperature-dependent atomic force microscopy under ultrahigh vacuum conditions (UHV), we can characterize the general friction levels across the first-order phase transitions and for the different phases. While structural and electronic properties for different phases appear to be of minor influence on friction, a distinct peak in friction is observed during the phase transition when cooling the sample from the nearly commensurate CDW (NC-CDW) phase to the commensurate CDW (C-CDW) phase. By performing systematic measurements as a function of load, scan velocity, and scan time, a recently proposed friction mechanism can be corroborated, where the AFM tip gradually induces local transformations of the material close to the spinodal point in a thermally activated and shear-assisted process until the surface is fully "harvested". Our results demonstrate that repeated nanomechanical stress can trigger local first-order phase transitions constituting a so far little explored mechanical energy dissipation channel.
利用原子力显微镜(AFM)的纳米摩擦学可以被认为是一种通过局部机械相互作用来分析相转变材料的独特方法。在这项工作中,我们研究了层状过渡金属二卤代物 1T-TaS 的摩擦,它可以经历一级电荷密度波(CDW)相变。基于超真空条件(UHV)下的温度相关原子力显微镜,我们可以表征整个一级相变和不同相之间的一般摩擦水平。虽然不同相的结构和电子性质对摩擦的影响似乎较小,但在从近乎共格 CDW(NC-CDW)相冷却到共格 CDW(C-CDW)相的过程中,观察到摩擦明显增加。通过进行作为负载、扫描速度和扫描时间函数的系统测量,可以证实最近提出的摩擦机制,其中 AFM 针尖在热激活和剪切辅助过程中逐渐诱导材料的局部转变,直到表面完全“收获”。我们的结果表明,重复的纳米机械应力可以引发局部一级相变,这是一个目前探索较少的机械能耗散通道。