Suppr超能文献

阴离子交换膜在氢能转化器件中的挑战与策略。

Challenges and Strategies of Anion Exchange Membranes in Hydrogen-electricity Energy Conversion Devices.

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

University of Science and Technology of China, Hefei, 244199, P. R. China.

出版信息

Chemistry. 2023 May 8;29(26):e202203173. doi: 10.1002/chem.202203173. Epub 2023 Mar 22.

Abstract

Alkaline hydrogen-electricity energy conversion technologies, involving anion exchange membrane fuel cells (AEMFCs) and anion exchange membrane water electrolyzers (AEMWEs) are more appealing than the acidic counterparts due to the elimination of precious metal catalysts. However, the physicochemical properties of anion exchange membrane (AEMs), i.e., ionic conductivity, mechanical strength, stability, etc., are inferior to that of proton exchange membranes (PEMs), thus hindering these alkaline technologies from practical employment. To promote their development, we summarize the main challenges and the corresponding strategies of AEMs for the application of AEMFCs and AEMWEs in this review. The hydroxide transportation mechanism, ion exchange capacity, hydration and microscopic morphology that are relevant to the ionic conductivity are discussed firstly. Following the ionic conductivity, another obstacle, stability of AEMs is comprehensively described in terms of alkaline stability, mechanical stability and electrochemical stability. Upon integrating into the devices, water management, carbonation effect and membrane-electrode interface that are critical to the cell performance are highlighted as well. This review is anticipated to provide insights into the AEM design for hydrogen-electric energy conversion devices, thus accelerating the widespread commercialization of these promising technologies.

摘要

碱性氢能源转换技术,包括阴离子交换膜燃料电池(AEMFCs)和阴离子交换膜水电解槽(AEMWEs),由于消除了贵金属催化剂,比酸性对应物更具吸引力。然而,阴离子交换膜(AEMs)的物理化学性质,如离子电导率、机械强度、稳定性等,不如质子交换膜(PEMs),因此阻碍了这些碱性技术的实际应用。为了促进它们的发展,我们在这篇综述中总结了 AEM 应用于 AEMFCs 和 AEMWEs 的主要挑战和相应策略。首先讨论了与离子电导率相关的氢氧根离子传输机制、离子交换容量、水合作用和微观形态。在离子电导率之后,还从碱性稳定性、机械稳定性和电化学稳定性三个方面全面描述了 AEM 的另一个障碍——稳定性。在集成到设备中时,还强调了对电池性能至关重要的水管理、碳化效应和膜电极界面。本综述有望为氢能源转换器件的 AEM 设计提供深入的见解,从而加速这些有前途的技术的广泛商业化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验