Suppr超能文献

用于先进水电解的工程化坚固三嗪交联和吡啶封端阴离子交换膜

Engineering Robust Triazine Crosslinked and Pyridine Capped Anion Exchange Membrane for Advanced Water Electrolysis.

作者信息

Deng Guoxiong, Liao Yiwen, Lin Yakai, Ding Li, Wang Haihui

机构信息

Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202412632. doi: 10.1002/anie.202412632.

Abstract

Exploring high-performance anion exchange membranes (AEM) for water electrolyzers (AEMWEs) is significant for green hydrogen production. However, the current AEMWEs are restricted by the poor mechanical strength and low OH conductivity of AEMs, leading to the low working stability and low current density. Here, we develop a robust AEM with polybiphenylpiperidium network by combining the crosslinking with triazine and the capping with pyridine for advanced AEMWEs. The AEM exhibits an excellent mechanical strength (79.4 MPa), low swelling ratio (19.2 %), persistent alkali stability (≈5,000 hours) and high OH conductivity (247.2 mS cm) which achieves the state-of-the-art AEMs. Importantly, when applied in AEMWEs, the corresponding electrolyzer equipped with commercial nickel iron and nickel molybdenum catalysts obtained a current density of up to 3.0 A cm at 2 V and could be stably operated ~430 h at a high current density of 1.6 A cm, which exceeds the most of AEMWEs. Our results suggest that triazine crosslinking and pyridine capping can effectively improve the overall performance of the AEMWEs.

摘要

探索用于水电解槽(AEMWEs)的高性能阴离子交换膜(AEM)对于绿色制氢具有重要意义。然而,目前的AEMWEs受到AEM机械强度差和OH传导率低的限制,导致工作稳定性低和电流密度低。在此,我们通过将三嗪交联和吡啶封端相结合,开发了一种具有聚联苯哌啶网络的坚固AEM,用于先进的AEMWEs。该AEM表现出优异的机械强度(79.4 MPa)、低溶胀率(19.2%)、持久的碱稳定性(约5000 小时)和高OH传导率(247.2 mS cm),达到了最先进的AEM水平。重要的是,当应用于AEMWEs时,配备商业镍铁和镍钼催化剂的相应电解槽在2 V时获得了高达3.0 A cm的电流密度,并且在1.6 A cm的高电流密度下可以稳定运行约430 小时,这超过了大多数AEMWEs。我们的结果表明,三嗪交联和吡啶封端可以有效提高AEMWEs的整体性能。

相似文献

1
Engineering Robust Triazine Crosslinked and Pyridine Capped Anion Exchange Membrane for Advanced Water Electrolysis.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202412632. doi: 10.1002/anie.202412632.
2
Poly(Aryl--Aryl Piperidinium) Copolymers for Anion Exchange Membrane Fuel Cells and Water Electrolyzers.
Acc Chem Res. 2025 Mar 4;58(5):688-702. doi: 10.1021/acs.accounts.4c00695. Epub 2025 Feb 10.
4
N-Methylquinuclidinium-Based Anion Exchange Membrane with Ultrahigh Alkaline Stability.
Adv Mater. 2023 Dec;35(51):e2306675. doi: 10.1002/adma.202306675. Epub 2023 Nov 10.
5
Challenges and Strategies of Anion Exchange Membranes in Hydrogen-electricity Energy Conversion Devices.
Chemistry. 2023 May 8;29(26):e202203173. doi: 10.1002/chem.202203173. Epub 2023 Mar 22.
6
Anion-exchange membrane water electrolyzers and fuel cells.
Chem Soc Rev. 2022 Nov 28;51(23):9620-9693. doi: 10.1039/d2cs00038e.
7
Anion Exchange Membrane Water Electrolysis at 10 A ⋅ cm Over 800 Hours.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413698. doi: 10.1002/anie.202413698. Epub 2024 Nov 7.
8
Polyarylmethylpiperidinium (PAMP) for Next Generation Anion Exchange Membranes.
Angew Chem Int Ed Engl. 2025 May;64(19):e202503715. doi: 10.1002/anie.202503715. Epub 2025 Mar 12.
9
"Thiol-ene" crosslinked polybenzimidazoles anion exchange membrane with enhanced performance and durability.
J Colloid Interface Sci. 2023 May 15;638:349-362. doi: 10.1016/j.jcis.2023.01.137. Epub 2023 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验