Li Fanghua, Li Yiwei, Novoselov K S, Liang Feng, Meng Jiashen, Ho Shih-Hsin, Zhao Tong, Zhou Hui, Ahmad Awais, Zhu Yinlong, Hu Liangxing, Ji Dongxiao, Jia Litao, Liu Rui, Ramakrishna Seeram, Zhang Xingcai
Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore.
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
Nanomicro Lett. 2023 Jan 11;15(1):35. doi: 10.1007/s40820-022-00993-4.
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m g via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
我们将生物资源升级概念应用于可持续能源、环境和生物医学领域,重点关注循环经济、可持续性和碳中和,利用高可用性和低利用率生物质(HALUB)。我们致力于开发高效节能技术,以实现可持续能源和材料回收及应用。本文总结了用于HALUB的热化学转化(TC)、生物化学转化(BC)、电化学转化(EC)和光化学转化(PTC)技术。通过TC,微藻生物质可贡献35.72 MJ Kg的生物燃料高热值,每吨生物质的总效益达749美元。通过豆渣的热解碳化,生物炭的比表面积达到3000 m²/g。木质纤维素生物质通过BC可有效转化为生物刺激剂和生物肥料,转化效率高达90%以上。此外,木质纤维素生物质通过EC可贡献672 mA/m²的电流密度。通过EC和PTC进行电催化可100%选择性合成生物资源。机器学习、技术经济分析和生命周期分析对于HALUB的各种升级方法至关重要。本文还强调了可持续生物材料、可持续生活材料以及用于生物医学和多功能应用(如纳米催化、微流体和微/纳米马达)的技术。进一步讨论了用于新能源和材料的HALUB完全转化和利用的新技术和系统。