文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于弱标注数据的协同标注的半监督训练在胸部 CT 结节检测中的应用。

Semi-supervised training using cooperative labeling of weakly annotated data for nodule detection in chest CT.

机构信息

University of Maryland, Computer Science Department, Iribe Center for Computer Science and Engineering, College Park, Maryland, USA.

Division of Imaging, Diagnostics, and Software Reliability (DIDSR), OSEL, CDRH, FDA, Silver Spring, Maryland, USA.

出版信息

Med Phys. 2023 Jul;50(7):4255-4268. doi: 10.1002/mp.16219. Epub 2023 Jan 27.


DOI:10.1002/mp.16219
PMID:36630691
Abstract

PURPOSE: Machine learning algorithms are best trained with large quantities of accurately annotated samples. While natural scene images can often be labeled relatively cheaply and at large scale, obtaining accurate annotations for medical images is both time consuming and expensive. In this study, we propose a cooperative labeling method that allows us to make use of weakly annotated medical imaging data for the training of a machine learning algorithm. As most clinically produced data are weakly-annotated - produced for use by humans rather than machines and lacking information machine learning depends upon - this approach allows us to incorporate a wider range of clinical data and thereby increase the training set size. METHODS: Our pseudo-labeling method consists of multiple stages. In the first stage, a previously established network is trained using a limited number of samples with high-quality expert-produced annotations. This network is used to generate annotations for a separate larger dataset that contains only weakly annotated scans. In the second stage, by cross-checking the two types of annotations against each other, we obtain higher-fidelity annotations. In the third stage, we extract training data from the weakly annotated scans, and combine it with the fully annotated data, producing a larger training dataset. We use this larger dataset to develop a computer-aided detection (CADe) system for nodule detection in chest CT. RESULTS: We evaluated the proposed approach by presenting the network with different numbers of expert-annotated scans in training and then testing the CADe using an independent expert-annotated dataset. We demonstrate that when availability of expert annotations is severely limited, the inclusion of weakly-labeled data leads to a 5% improvement in the competitive performance metric (CPM), defined as the average of sensitivities at different false-positive rates. CONCLUSIONS: Our proposed approach can effectively merge a weakly-annotated dataset with a small, well-annotated dataset for algorithm training. This approach can help enlarge limited training data by leveraging the large amount of weakly labeled data typically generated in clinical image interpretation.

摘要

目的:机器学习算法最好使用大量准确标注的样本进行训练。虽然自然场景图像通常可以相对廉价且大规模地进行标注,但获取医学图像的准确标注既费时又昂贵。在本研究中,我们提出了一种合作标注方法,允许我们利用弱标注的医学成像数据来训练机器学习算法。由于大多数临床产生的数据都是弱标注的 - 为人类而非机器生成,并且缺乏机器学习所依赖的信息 - 这种方法使我们能够纳入更广泛的临床数据,从而增加训练集的规模。

方法:我们的伪标注方法由多个阶段组成。在第一阶段,使用数量有限的高质量专家生成标注样本对先前建立的网络进行训练。该网络用于对仅包含弱标注扫描的单独较大数据集进行标注。在第二阶段,通过相互交叉检查两种类型的标注,我们获得更准确的标注。在第三阶段,我们从弱标注扫描中提取训练数据,并将其与完全标注的数据相结合,生成更大的训练数据集。我们使用这个更大的数据集来开发胸部 CT 中结节检测的计算机辅助检测 (CADe) 系统。

结果:我们通过在训练中向网络提供不同数量的专家标注扫描,然后使用独立的专家标注数据集来测试 CADe,评估了所提出的方法。我们证明,当专家标注的可用性严重受限时,纳入弱标注数据可将竞争性能指标 (CPM) 提高 5%,CPM 定义为不同假阳性率下的灵敏度平均值。

结论:我们提出的方法可以有效地将弱标注数据集与小的、标注良好的数据集合并,用于算法训练。这种方法可以通过利用临床图像解释中通常生成的大量弱标注数据来帮助扩大有限的训练数据。

相似文献

[1]
Semi-supervised training using cooperative labeling of weakly annotated data for nodule detection in chest CT.

Med Phys. 2023-7

[2]
An Effective Semi-Supervised Approach for Liver CT Image Segmentation.

IEEE J Biomed Health Inform. 2022-8

[3]
Segmentation only uses sparse annotations: Unified weakly and semi-supervised learning in medical images.

Med Image Anal. 2022-8

[4]
A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.

Med Phys. 2023-9

[5]
Point based weakly semi-supervised biomarker detection with cross-scale and label assignment in retinal OCT images.

Comput Methods Programs Biomed. 2024-6

[6]
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.

Med Image Anal. 2023-7

[7]
A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations.

Int J Mol Sci. 2023-11-7

[8]
BRAIxDet: Learning to detect malignant breast lesion with incomplete annotations.

Med Image Anal. 2024-8

[9]
Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.

Med Image Anal. 2021-10

[10]
Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images.

Sensors (Basel). 2022-8-13

引用本文的文献

[1]
Exploring synthetic datasets for computer-aided detection: a case study using phantom scan data for enhanced lung nodule false positive reduction.

J Med Imaging (Bellingham). 2024-7

[2]
Regulatory considerations for medical imaging AI/ML devices in the United States: concepts and challenges.

J Med Imaging (Bellingham). 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索