文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Exploring synthetic datasets for computer-aided detection: a case study using phantom scan data for enhanced lung nodule false positive reduction.

作者信息

Farhangi Mohammad Mehdi, Maynord Michael, Fermüller Cornelia, Aloimonos Yiannis, Sahiner Berkman, Petrick Nicholas

机构信息

FDA, CDRH, OSEL, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, Maryland, United States.

University of Maryland, Iribe Center for Computer Science and Engineering, Computer Science Department, College Park, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2024 Jul;11(4):044507. doi: 10.1117/1.JMI.11.4.044507. Epub 2024 Aug 7.


DOI:10.1117/1.JMI.11.4.044507
PMID:39119067
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11304989/
Abstract

PURPOSE: Synthetic datasets hold the potential to offer cost-effective alternatives to clinical data, ensuring privacy protections and potentially addressing biases in clinical data. We present a method leveraging such datasets to train a machine learning algorithm applied as part of a computer-aided detection (CADe) system. APPROACH: Our proposed approach utilizes clinically acquired computed tomography (CT) scans of a physical anthropomorphic phantom into which manufactured lesions were inserted to train a machine learning algorithm. We treated the training database obtained from the anthropomorphic phantom as a simplified representation of clinical data and increased the variability in this dataset using a set of randomized and parameterized augmentations. Furthermore, to mitigate the inherent differences between phantom and clinical datasets, we investigated adding unlabeled clinical data into the training pipeline. RESULTS: We apply our proposed method to the false positive reduction stage of a lung nodule CADe system in CT scans, in which regions of interest containing potential lesions are classified as nodule or non-nodule regions. Experimental results demonstrate the effectiveness of the proposed method; the system trained on labeled data from physical phantom scans and unlabeled clinical data achieves a sensitivity of 90% at eight false positives per scan. Furthermore, the experimental results demonstrate the benefit of the physical phantom in which the performance in terms of competitive performance metric increased by 6% when a training set consisting of 50 clinical CT scans was enlarged by the scans obtained from the physical phantom. CONCLUSIONS: The scalability of synthetic datasets can lead to improved CADe performance, particularly in scenarios in which the size of the labeled clinical data is limited or subject to inherent bias. Our proposed approach demonstrates an effective utilization of synthetic datasets for training machine learning algorithms.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/99a35bbbc604/JMI-011-044507-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/2d5810327a65/JMI-011-044507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/bfca320eeb74/JMI-011-044507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/ce526545afbe/JMI-011-044507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/d017f1d83a78/JMI-011-044507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/8f35dd645a9e/JMI-011-044507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/512470238569/JMI-011-044507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/4095ac4e4276/JMI-011-044507-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/caa33ac28aca/JMI-011-044507-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/99a35bbbc604/JMI-011-044507-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/2d5810327a65/JMI-011-044507-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/bfca320eeb74/JMI-011-044507-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/ce526545afbe/JMI-011-044507-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/d017f1d83a78/JMI-011-044507-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/8f35dd645a9e/JMI-011-044507-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/512470238569/JMI-011-044507-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/4095ac4e4276/JMI-011-044507-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/caa33ac28aca/JMI-011-044507-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e78/11304989/99a35bbbc604/JMI-011-044507-g009.jpg

相似文献

[1]
Exploring synthetic datasets for computer-aided detection: a case study using phantom scan data for enhanced lung nodule false positive reduction.

J Med Imaging (Bellingham). 2024-7

[2]
A New Algorithm for Automatically Calculating Noise, Spatial Resolution, and Contrast Image Quality Metrics: Proof-of-Concept and Agreement With Subjective Scores in Phantom and Clinical Abdominal CT.

Invest Radiol. 2023-9-1

[3]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[4]
Point-cloud segmentation with in-silico data augmentation for prostate cancer treatment.

Med Phys. 2025-4-3

[5]
Development and in silico imaging trial evaluation of a deep-learning-based transmission-less attenuation compensation method for DaT SPECT.

Med Phys. 2025-8

[6]
Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring.

J Med Imaging (Bellingham). 2025-1

[7]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[8]
Pulmonary nodule detection in low dose computed tomography using a medical-to-medical transfer learning approach.

J Med Imaging (Bellingham). 2024-7

[9]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[10]
Non-orthogonal kV imaging guided patient position verification in non-coplanar radiation therapy with dataset-free implicit neural representation.

Med Phys. 2025-5-19

本文引用的文献

[1]
Semi-supervised training using cooperative labeling of weakly annotated data for nodule detection in chest CT.

Med Phys. 2023-7

[2]
Pulmonary nodules detection based on multi-scale attention networks.

Sci Rep. 2022-1-27

[3]
Generative adversarial network in medical imaging: A review.

Med Image Anal. 2019-8-31

[4]
Evaluation of Digital Breast Tomosynthesis as Replacement of Full-Field Digital Mammography Using an In Silico Imaging Trial.

JAMA Netw Open. 2018-11-2

[5]
Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge.

Med Image Anal. 2017-7-13

[6]
Automatic detection of large pulmonary solid nodules in thoracic CT images.

Med Phys. 2015-10

[7]
Statistical analysis of lung nodule volume measurements with CT in a large-scale phantom study.

Med Phys. 2015-7

[8]
Large scale validation of the M5L lung CAD on heterogeneous CT datasets.

Med Phys. 2015-4

[9]
Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images.

Med Image Anal. 2013-12-17

[10]
A novel computer-aided lung nodule detection system for CT images.

Med Phys. 2011-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索