文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

BRAIxDet:利用不完整标注学习检测恶性乳腺病变

BRAIxDet: Learning to detect malignant breast lesion with incomplete annotations.

机构信息

Australian Institute for Machine Learning, The University of Adelaide, Adelaide, Australia.

Australian Institute for Machine Learning, The University of Adelaide, Adelaide, Australia.

出版信息

Med Image Anal. 2024 Aug;96:103192. doi: 10.1016/j.media.2024.103192. Epub 2024 May 10.


DOI:10.1016/j.media.2024.103192
PMID:38810516
Abstract

Methods to detect malignant lesions from screening mammograms are usually trained with fully annotated datasets, where images are labelled with the localisation and classification of cancerous lesions. However, real-world screening mammogram datasets commonly have a subset that is fully annotated and another subset that is weakly annotated with just the global classification (i.e., without lesion localisation). Given the large size of such datasets, researchers usually face a dilemma with the weakly annotated subset: to not use it or to fully annotate it. The first option will reduce detection accuracy because it does not use the whole dataset, and the second option is too expensive given that the annotation needs to be done by expert radiologists. In this paper, we propose a middle-ground solution for the dilemma, which is to formulate the training as a weakly- and semi-supervised learning problem that we refer to as malignant breast lesion detection with incomplete annotations. To address this problem, our new method comprises two stages, namely: (1) pre-training a multi-view mammogram classifier with weak supervision from the whole dataset, and (2) extending the trained classifier to become a multi-view detector that is trained with semi-supervised student-teacher learning, where the training set contains fully and weakly-annotated mammograms. We provide extensive detection results on two real-world screening mammogram datasets containing incomplete annotations and show that our proposed approach achieves state-of-the-art results in the detection of malignant breast lesions with incomplete annotations.

摘要

方法来检测恶性病变从筛查乳房 X 光照片通常用完全注释数据集进行训练,其中图像标记的本地化和癌症病变的分类。然而,现实世界的筛查乳房 X 光照片数据集通常有一个子集,完全注释和另一个子集只是弱注释的全球分类(即,没有病变的本地化)。由于这种数据集的大小很大,研究人员通常面临一个困境,用弱注释子集:不使用它或完全注释它。第一个选项将降低检测精度,因为它没有使用整个数据集,第二个选项是太昂贵,因为注释需要由专家放射科医生完成。在本文中,我们提出了一个中间地带的解决方案,这是一个弱和半监督学习问题的培训,我们指的是恶性乳腺病变的不完全注释检测。为了解决这个问题,我们的新方法包括两个阶段,即:(1)用整个数据集的弱监督预训练多视图乳房 X 光照片分类器,(2)扩展训练有半监督学生-教师学习的分类器,成为一个多视图检测器,其中训练集包含完全和弱注释的乳房 X 光照片。我们提供了两个现实世界的筛查乳房 X 光照片数据集的广泛检测结果,这些数据集包含不完全注释,并表明我们提出的方法在不完全注释的恶性乳腺病变检测中达到了最新水平。

相似文献

[1]
BRAIxDet: Learning to detect malignant breast lesion with incomplete annotations.

Med Image Anal. 2024-8

[2]
Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.

Med Image Anal. 2021-10

[3]
Semi-supervised training using cooperative labeling of weakly annotated data for nodule detection in chest CT.

Med Phys. 2023-7

[4]
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.

BMC Med Imaging. 2021-5-8

[5]
Weakly Supervised Lesion Detection and Diagnosis for Breast Cancers With Partially Annotated Ultrasound Images.

IEEE Trans Med Imaging. 2024-7

[6]
Segmentation only uses sparse annotations: Unified weakly and semi-supervised learning in medical images.

Med Image Anal. 2022-8

[7]
A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica.

Med Biol Eng Comput. 2022-4

[8]
Deep Learning to Improve Breast Cancer Detection on Screening Mammography.

Sci Rep. 2019-8-29

[9]
Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images.

IEEE Trans Med Imaging. 2018-9-24

[10]
A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations.

Int J Mol Sci. 2023-11-7

引用本文的文献

[1]
Evaluating axillary lymph node metastasis risks in breast cancer patients via Semi-ALNP: a multicenter study.

EClinicalMedicine. 2025-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索