基于点的视网膜 OCT 图像跨尺度和标签分配弱半监督生物标志物检测。
Point based weakly semi-supervised biomarker detection with cross-scale and label assignment in retinal OCT images.
机构信息
School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, PR China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, PR China.
School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, PR China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan 430065, PR China.
出版信息
Comput Methods Programs Biomed. 2024 Jun;251:108229. doi: 10.1016/j.cmpb.2024.108229. Epub 2024 May 15.
BACKGROUND AND OBJECTIVE
Optical coherence tomography (OCT) is currently one of the most advanced retinal imaging methods. Retinal biomarkers in OCT images are of clinical significance and can assist ophthalmologists in diagnosing lesions. Compared with fundus images, OCT can provide higher resolution segmentation. However, image annotation at the bounding box level needs to be performed by ophthalmologists carefully and is difficult to obtain. In addition, the large variation in shape of different retinal markers and the inconspicuous appearance of biomarkers make it difficult for existing deep learning-based methods to effectively detect them. To overcome the above challenges, we propose a novel network for the detection of retinal biomarkers in OCT images.
METHODS
We first address the issue of labeling cost using a novel weakly semi-supervised object detection method with point annotations which can reduce bounding box-level annotation efforts. To extend the method to the detection of biomarkers in OCT images, we propose multiple consistent regularizations for point-to-box regression network to deal with the shortage of supervision, which aims to learn more accurate regression mappings. Furthermore, in the subsequent fully supervised detection, we propose a cross-scale feature enhancement module to alleviate the detection problems caused by the large-scale variation of biomarkers. We also propose a dynamic label assignment strategy to distinguish samples of different importance more flexibly, thereby reducing detection errors due to the indistinguishable appearance of the biomarkers.
RESULTS
When using our detection network, our regressor also achieves an AP value of 20.83 s when utilizing a 5 % fully labeled dataset partition, surpassing the performance of other comparative methods at 5 % and 10 %. Even coming close to the 20.87 % result achieved by Point DETR under 20 % full labeling conditions. When using Group R-CNN as the point-to-box regressor, our detector achieves 27.21 % AP in the 50 % fully labeled dataset experiment. 7.42 % AP improvement is achieved compared to our detection network baseline Faster R-CNN.
CONCLUSIONS
The experimental findings not only demonstrate the effectiveness of our approach with minimal bounding box annotations but also highlight the enhanced biomarker detection performance of the proposed module. We have included a detailed algorithmic flow in the supplementary material.
背景与目的
光学相干断层扫描(OCT)是目前最先进的视网膜成像方法之一。OCT 图像中的视网膜生物标志物具有临床意义,可以帮助眼科医生诊断病变。与眼底图像相比,OCT 可以提供更高分辨率的分割。然而,视网膜生物标志物的边界框级别的图像注释需要由眼科医生仔细完成,并且难以获取。此外,不同视网膜生物标志物的形状变化较大,生物标志物的不明显外观使得现有的基于深度学习的方法难以有效地检测它们。为了克服上述挑战,我们提出了一种用于 OCT 图像中视网膜生物标志物检测的新型网络。
方法
我们首先使用一种新的基于点注释的弱半监督目标检测方法来解决标注成本问题,该方法可以减少边界框级别的注释工作。为了将该方法扩展到 OCT 图像中生物标志物的检测,我们针对点到框回归网络提出了多个一致性正则化方法,以解决监督不足的问题,旨在学习更准确的回归映射。此外,在随后的完全监督检测中,我们提出了一种跨尺度特征增强模块,以减轻由于生物标志物的大规模变化引起的检测问题。我们还提出了一种动态标签分配策略,以更灵活地区分不同重要性的样本,从而减少由于生物标志物的不可区分外观而导致的检测错误。
结果
当使用我们的检测网络时,我们的回归器在使用 5%完全标记数据集分区时也可以达到 20.83 的 AP 值,超过了其他比较方法在 5%和 10%时的性能。即使接近 Point DETR 在 20%完全标注条件下达到的 20.87%的结果。当使用 Group R-CNN 作为点到框回归器时,我们的检测器在 50%完全标记数据集实验中达到 27.21%的 AP。与我们的检测网络基线 Faster R-CNN 相比,提高了 7.42%的 AP。
结论
实验结果不仅证明了我们的方法在最小边界框注释下的有效性,还突出了所提出模块对生物标志物检测性能的增强。我们在补充材料中包含了详细的算法流程。