文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习和分子动力学增强纳米颗粒系统中的药物传递。

Utilizing machine learning and molecular dynamics for enhanced drug delivery in nanoparticle systems.

机构信息

Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran.

出版信息

Sci Rep. 2024 Nov 4;14(1):26677. doi: 10.1038/s41598-024-73268-0.


DOI:10.1038/s41598-024-73268-0
PMID:39496651
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11535187/
Abstract

Materials data science and machine learning (ML) are pivotal in advancing cancer treatment strategies beyond traditional methods like chemotherapy. Nanotherapeutics, which merge nanotechnology with targeted drug delivery, exemplify this advancement by offering improved precision and reduced side effects in cancer therapy. The development of these nanotherapeutic agents depends critically on understanding nanoparticle (NP) properties and their biological interactions, often analyzed through molecular dynamics (MD) simulations. This study enhances these analyses by integrating ML with MD simulations, significantly improving both prediction accuracy and computational efficiency. We introduce a comprehensive three-stage methodology for predicting the solvent-accessible surface area (SASA) of NPs, which is crucial for their therapeutic efficacy. The process involves training an ML model to forecast the many-body tensor representation (MBTR) for future time steps, applying data augmentation to increase dataset realism, and refining the SASA predictor with both augmented and original data. Results demonstrate that our methodology can predict SASA values 299 time steps ahead with a 40-fold speed improvement and a 25% accuracy increase over existing methods. Importantly, it provides a 300-fold increase in computational speed compared to traditional simulation techniques, offering substantial cost and time savings for nanotherapeutic research and development.

摘要

材料数据科学和机器学习 (ML) 在推动癌症治疗策略超越传统方法(如化疗)方面至关重要。纳米疗法将纳米技术与靶向药物输送相结合,通过在癌症治疗中提供更高的精度和降低副作用来体现这一进步。这些纳米治疗剂的开发取决于对纳米颗粒 (NP) 特性及其生物相互作用的理解,通常通过分子动力学 (MD) 模拟进行分析。本研究通过将 ML 与 MD 模拟相结合,显著提高了预测准确性和计算效率,从而增强了这些分析。我们提出了一种综合的三阶段方法来预测 NP 的溶剂可及表面积 (SASA),这对其治疗效果至关重要。该过程包括训练一个 ML 模型来预测未来时间步的多体张量表示 (MBTR),应用数据增强来增加数据集的真实性,以及使用增强和原始数据来改进 SASA 预测器。结果表明,我们的方法可以提前 299 个时间步预测 SASA 值,速度提高了 40 倍,准确性比现有方法提高了 25%。重要的是,与传统模拟技术相比,它提供了 300 倍的计算速度提升,为纳米治疗研究和开发节省了大量成本和时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/5ee105c8eb43/41598_2024_73268_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/3e50a3373f3c/41598_2024_73268_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/fd39c61d0a09/41598_2024_73268_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/625d005520c9/41598_2024_73268_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/c00756821540/41598_2024_73268_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/5ee105c8eb43/41598_2024_73268_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/3e50a3373f3c/41598_2024_73268_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/fd39c61d0a09/41598_2024_73268_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/625d005520c9/41598_2024_73268_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/c00756821540/41598_2024_73268_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe68/11535187/5ee105c8eb43/41598_2024_73268_Fig5_HTML.jpg

相似文献

[1]
Utilizing machine learning and molecular dynamics for enhanced drug delivery in nanoparticle systems.

Sci Rep. 2024-11-4

[2]
Predicting efficacy of drug-carrier nanoparticle designs for cancer treatment: a machine learning-based solution.

Sci Rep. 2023-1-11

[3]
Machine learning- a new paradigm in nanoparticle-mediated drug delivery to cancerous tissues through the human cardiovascular system enhanced by magnetic field.

Sci Rep. 2024-9-27

[4]
A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.

J Mol Model. 2024-1-18

[5]
PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy.

Mol Pharm. 2020-7-6

[6]
Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches.

Int J Nanomedicine. 2022

[7]
A Look Inside the Black Box of Machine Learning Photodynamics Simulations.

Acc Chem Res. 2022-7-19

[8]
Uncertainty Quantification and Sensitivity Analysis of Partial Charges on Macroscopic Solvent Properties in Molecular Dynamics Simulations with a Machine Learning Model.

J Chem Inf Model. 2021-4-26

[9]
NANO.PTML model for read-across prediction of nanosystems in neurosciences. computational model and experimental case of study.

J Nanobiotechnology. 2024-7-23

[10]
Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery.

Acta Biomater. 2022-12

引用本文的文献

[1]
Machine Learning and Artificial Intelligence in Nanomedicine.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[2]
Nanotechnology in Orthopedic Care: Advances in Drug Delivery, Implants, and Biocompatibility Considerations.

Int J Nanomedicine. 2025-7-21

[3]
Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm.

Sci Rep. 2025-7-16

[4]
Machine learning enabled multiscale model for nanoparticle margination and physiology based pharmacokinetics.

Comput Chem Eng. 2025-7

[5]
Insight into the Phase Inversion of Myristic Acid In Situ Gels for Drug Delivery Applications.

ACS Omega. 2025-5-21

本文引用的文献

[1]
From complex data to clear insights: visualizing molecular dynamics trajectories.

Front Bioinform. 2024-4-11

[2]
Drug repurposing for cancer therapy.

Signal Transduct Target Ther. 2024-4-19

[3]
Artificial intelligence: Machine learning approach for screening large database and drug discovery.

Antiviral Res. 2023-12

[4]
Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications.

Micromachines (Basel). 2023-9-18

[5]
Cancer Nanomedicine: Emerging Strategies and Therapeutic Potentials.

Molecules. 2023-6-30

[6]
Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.

Genes Dis. 2022-3-18

[7]
A suitable drug structure for interaction with SARS-CoV-2 main protease between boceprevir, masitinib and rupintrivir; a molecular dynamics study.

Arab J Chem. 2023-9

[8]
The confluence of machine learning and multiscale simulations.

Curr Opin Struct Biol. 2023-6

[9]
Recent advances in long-acting drug delivery systems for anticancer drug.

Adv Drug Deliv Rev. 2023-3

[10]
Predicting efficacy of drug-carrier nanoparticle designs for cancer treatment: a machine learning-based solution.

Sci Rep. 2023-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索