Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran.
Sci Rep. 2024 Nov 4;14(1):26677. doi: 10.1038/s41598-024-73268-0.
Materials data science and machine learning (ML) are pivotal in advancing cancer treatment strategies beyond traditional methods like chemotherapy. Nanotherapeutics, which merge nanotechnology with targeted drug delivery, exemplify this advancement by offering improved precision and reduced side effects in cancer therapy. The development of these nanotherapeutic agents depends critically on understanding nanoparticle (NP) properties and their biological interactions, often analyzed through molecular dynamics (MD) simulations. This study enhances these analyses by integrating ML with MD simulations, significantly improving both prediction accuracy and computational efficiency. We introduce a comprehensive three-stage methodology for predicting the solvent-accessible surface area (SASA) of NPs, which is crucial for their therapeutic efficacy. The process involves training an ML model to forecast the many-body tensor representation (MBTR) for future time steps, applying data augmentation to increase dataset realism, and refining the SASA predictor with both augmented and original data. Results demonstrate that our methodology can predict SASA values 299 time steps ahead with a 40-fold speed improvement and a 25% accuracy increase over existing methods. Importantly, it provides a 300-fold increase in computational speed compared to traditional simulation techniques, offering substantial cost and time savings for nanotherapeutic research and development.
材料数据科学和机器学习 (ML) 在推动癌症治疗策略超越传统方法(如化疗)方面至关重要。纳米疗法将纳米技术与靶向药物输送相结合,通过在癌症治疗中提供更高的精度和降低副作用来体现这一进步。这些纳米治疗剂的开发取决于对纳米颗粒 (NP) 特性及其生物相互作用的理解,通常通过分子动力学 (MD) 模拟进行分析。本研究通过将 ML 与 MD 模拟相结合,显著提高了预测准确性和计算效率,从而增强了这些分析。我们提出了一种综合的三阶段方法来预测 NP 的溶剂可及表面积 (SASA),这对其治疗效果至关重要。该过程包括训练一个 ML 模型来预测未来时间步的多体张量表示 (MBTR),应用数据增强来增加数据集的真实性,以及使用增强和原始数据来改进 SASA 预测器。结果表明,我们的方法可以提前 299 个时间步预测 SASA 值,速度提高了 40 倍,准确性比现有方法提高了 25%。重要的是,与传统模拟技术相比,它提供了 300 倍的计算速度提升,为纳米治疗研究和开发节省了大量成本和时间。
Acc Chem Res. 2022-7-19
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025
Int J Nanomedicine. 2025-7-21
Front Bioinform. 2024-4-11
Signal Transduct Target Ther. 2024-4-19
Micromachines (Basel). 2023-9-18
Molecules. 2023-6-30
Curr Opin Struct Biol. 2023-6
Adv Drug Deliv Rev. 2023-3