Suppr超能文献

基于浸没边界-格子玻尔兹曼方法的微血管中药物载体设计的数值模拟

Numerical Simulation in Microvessels for the Design of Drug Carriers with the Immersed Boundary-Lattice Boltzmann Method.

作者信息

Hou Yulin, Hu Mengdan, Sun Dongke, Sun Yueming

机构信息

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Key Laboratory of Structure and Thermal Protection of High Speed Aircraft, Ministry of Education, Southeast University, Nanjing 211189, China.

出版信息

Micromachines (Basel). 2025 Mar 28;16(4):389. doi: 10.3390/mi16040389.

Abstract

This study employs numerical techniques to investigate the motion characteristics of red blood cells (RBCs) and drug carriers (DCs) within microvessels. A coupled model of the lattice Boltzmann method (LBM) and immersed boundary method (IBM) is proposed to investigate the migration of particles in blood flow. The lattice Bhatnagar-Gross-Krook (LBGK) model is utilized to simulate the flow dynamics of blood. While the IBM is employed to simulate the motion of particles, using a membrane model based on the finite element method. The present model was validated and demonstrated good agreements with previous theoretical and numerical results. Our study mainly examines the impact of the Reynolds number, DC size, and stiffness. Results suggest that these factors would influence particles' equilibrium regions, motion stability and interactions between RBCs and DCs. Within a certain range, under a higher Reynolds number, the motion of DCs remains stable and DCs can swiftly attain their equilibrium states. DCs with smaller sizes and softer stiffness demonstrate a relatively stable motion state and their interactions with RBCs are weakened. The findings would offer novel perspectives on drug transport mechanisms and the impact of drug release, providing valuable guidance for the design of DCs.

摘要

本研究采用数值技术来研究红细胞(RBCs)和药物载体(DCs)在微血管内的运动特性。提出了一种格子玻尔兹曼方法(LBM)和浸入边界方法(IBM)的耦合模型,以研究颗粒在血流中的迁移。利用格子 Bhatnagar-Gross-Krook(LBGK)模型来模拟血液的流动动力学。而IBM则用于模拟颗粒的运动,采用基于有限元方法的膜模型。本模型经过验证,并与先前的理论和数值结果显示出良好的一致性。我们的研究主要考察了雷诺数、DC尺寸和刚度的影响。结果表明,这些因素会影响颗粒的平衡区域、运动稳定性以及RBCs与DCs之间的相互作用。在一定范围内,在较高的雷诺数下,DCs的运动保持稳定,并且DCs能够迅速达到其平衡状态。尺寸较小且刚度较软的DCs表现出相对稳定的运动状态,并且它们与RBCs之间的相互作用会减弱。这些发现将为药物传输机制以及药物释放的影响提供新的视角,为DCs的设计提供有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/248d/12029638/a3b0152452ea/micromachines-16-00389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验