Yu Weili, Li Feng, Huang Tao, Li Wei, Wu Tom
GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.
Innovation (Camb). 2022 Dec 20;4(1):100363. doi: 10.1016/j.xinn.2022.100363. eCollection 2023 Jan 30.
Halide perovskite heterojunctions rationally integrate the chemical and physical properties of multi-dimensional perovskites and judiciously chosen semiconductor materials, offering the promise of going beyond the limit of a single component. This emerging platform of materials innovation offers fresh opportunities to tune material properties, discover interesting phenomena, and enable novel applications. In this review, we first discuss the fundamentals of forming heterojunctions with perovskites and a wide range of semiconductors, and then we give an overview of the research progress of halide perovskite heterojunctions in terms of their optical, electrical, and mechanical properties, focusing on how the heterojunction tunes the energy band structure, electrical transport, and charge recombination behaviors. We further outline the progress of perovskite-based heterojunctions in optoelectronics. Finally, the challenges and future research directions for perovskite/semiconductor heterojunctions are discussed.
卤化物钙钛矿异质结合理地整合了多维钙钛矿的化学和物理性质以及精心挑选的半导体材料,有望突破单一组分的限制。这个新兴的材料创新平台为调节材料性质、发现有趣现象和实现新应用提供了新机会。在本综述中,我们首先讨论了用钙钛矿和多种半导体形成异质结的基本原理,然后概述了卤化物钙钛矿异质结在光学、电学和力学性质方面的研究进展,重点关注异质结如何调节能带结构、电输运和电荷复合行为。我们还概述了基于钙钛矿的异质结在光电子学方面的进展。最后,讨论了钙钛矿/半导体异质结面临的挑战和未来的研究方向。