Suppr超能文献

自闭症谱系障碍神经影像学诊断研究进展综述

Review of Progress in Diagnostic Studies of Autism Spectrum Disorder Using Neuroimaging.

作者信息

Kaur Palwinder, Kaur Amandeep

机构信息

Department of Computer Science and Technology, Central University of Punjab, Bathinda, Punjab, 151001, India.

出版信息

Interdiscip Sci. 2023 Mar;15(1):111-130. doi: 10.1007/s12539-022-00548-6. Epub 2023 Jan 12.

Abstract

This review article summarizes the recent advances in the diagnostic studies of autism spectrum disorders (ASDs) considering some of the most influential research articles from the last two decades. ASD is a heterogeneous neurodevelopmental disorder characterized by abnormalities in social interaction, communication, and behavioral patterns as well as some unique strengths and differences. The current diagnosis systems are based on autism diagnostic observation schedule (ADOS) or autism diagnostic interview-revised (ADI-R), but biological markers are also important for an effective diagnosis of ASDs. The amalgamation of neuroimaging techniques, such as structural and functional magnetic resonance imaging (sMRI and fMRI), with machine-learning and deep-learning approaches helps throw new light on typical biological markers of ASDs at the early stage of life. To assess the performance of a deep neural network, we develop a light-weighted CNN model for ASD classification. The overall accuracy, precision, and F1-score of the proposed model are 99.92%, 99.93% and 99.92%, respectively. All the neuroimaging studies we have reviewed can be divided into 3 categories, viz. thickness, volume and functional connectivity-based studies. We conclude with a discussion of the major findings of considered studies and promising directions for future research in this field.

摘要

这篇综述文章结合过去二十年中一些最具影响力的研究论文,总结了自闭症谱系障碍(ASD)诊断研究的最新进展。ASD是一种异质性神经发育障碍,其特征在于社交互动、沟通和行为模式异常,以及一些独特的优势和差异。目前的诊断系统基于自闭症诊断观察量表(ADOS)或自闭症诊断访谈修订版(ADI-R),但生物标志物对于ASD的有效诊断也很重要。将结构和功能磁共振成像(sMRI和fMRI)等神经成像技术与机器学习和深度学习方法相结合,有助于在生命早期阶段揭示ASD典型的生物标志物。为了评估深度神经网络的性能,我们开发了一种用于ASD分类的轻量级卷积神经网络(CNN)模型。所提出模型的总体准确率、精确率和F1分数分别为99.92%、99.93%和99.92%。我们所综述的所有神经成像研究可分为三类,即基于厚度、体积和功能连接性的研究。我们最后讨论了所考虑研究的主要发现以及该领域未来研究的有前景的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验