Suppr超能文献

用于确定阿尔茨海默病患者认知状态的简易筛查工具的开发。

Development of a simple screening tool for determining cognitive status in Alzheimer's disease.

机构信息

Department of Psychology, College of Science, Chung Yuan Christian University, Taoyuan, Taiwan.

Research Assistance Center, Show Chwan Memorial Hospital, Changhua City, Taiwan.

出版信息

PLoS One. 2023 Jan 12;18(1):e0280178. doi: 10.1371/journal.pone.0280178. eCollection 2023.

Abstract

Cognitive screening is often a first step to document cognitive status of patients suspected having Alzheimer's disease (AD). Unfortunately, screening neuropsychological tests are often insensitivity in the detection. The goal of this study was to develop a simple and sensitive screening neuropsychological test to facilitate early detection of AD. This study recruited 761 elderly individuals suspected of having AD and presenting various cognitive statuses (mean age: 77.69 ± 8.45 years; proportion of females: 65%; cognitively unimpaired, CU, n = 133; mild cognitive impairment, MCI, n = 231; dementia of Alzheimer's type, DAT, n = 397). This study developed a novel screening neuropsychological test incorporating assessments of the core memory deficits typical of early AD and an interview on memory function with an informant. The proposed History-based Artificial Intelligence-Show Chwan Assessment of Cognition (HAI-SAC) was assessed in terms of psychometric properties, test time, and discriminative ability. The results were compared with those obtained using other common screening tests, including Cognitive Abilities Screening Instrument (CASI), Montreal Cognitive Assessment (MoCA), and an extracted Mini-Mental State Examination score from CASI. HAI-SAC demonstrated acceptable internal consistency. Factor analysis revealed two factors: memory (semantic and contextual) and cognition-related information from informants. The assessment performance of HAI-SAC was strongly correlated with that of the common screening neuropsychological tests addressed in this study. HAI-SAC outperformed the other tests in differentiating CU individuals from patients with MCI (sensitivity: 0.87; specificity: 0.58; area under the curve [AUC]: 0.78) or DAT (sensitivity: 0.99; specificity: 0.89; AUC: 0.98). Performance of HAI-SAC on differentiating MCI from DAT was on par with performances of other tests (sensitivity: 0.78; specificity: 0.84; AUC: 0.87), while the test time was less than one quarter that of CASI and half that of MoCA. HAI-SAC is psychometrically sound, cost-effective, and sensitive in discriminating the cognitive status of AD.

摘要

认知筛查通常是记录疑似阿尔茨海默病(AD)患者认知状态的第一步。不幸的是,筛查神经心理学测试通常在检测方面不够敏感。本研究的目的是开发一种简单而敏感的筛查神经心理学测试,以促进 AD 的早期发现。本研究招募了 761 名疑似 AD 且具有不同认知状态的老年人(平均年龄:77.69 ± 8.45 岁;女性比例:65%;认知正常,CU,n = 133;轻度认知障碍,MCI,n = 231;阿尔茨海默病型痴呆,DAT,n = 397)。本研究开发了一种新的筛查神经心理学测试,该测试纳入了评估早期 AD 典型核心记忆缺陷的测试以及对记忆功能的访谈和知情者信息。提出的基于历史的人工智能-昭华认知评估(HAI-SAC)在心理测量特性、测试时间和鉴别能力方面进行了评估。并将结果与使用其他常见筛查测试(包括认知能力筛查工具(CASI)、蒙特利尔认知评估(MoCA)和从 CASI 中提取的 Mini-Mental State Examination 分数)获得的结果进行比较。HAI-SAC 表现出可接受的内部一致性。因子分析显示有两个因素:记忆(语义和上下文)和来自知情者的认知相关信息。HAI-SAC 的评估性能与本研究中涉及的其他常见筛查神经心理学测试高度相关。HAI-SAC 在区分 CU 个体与 MCI 患者(敏感性:0.87;特异性:0.58;曲线下面积 [AUC]:0.78)或 DAT 患者(敏感性:0.99;特异性:0.89;AUC:0.98)方面优于其他测试。HAI-SAC 在区分 MCI 与 DAT 方面的性能与其他测试相当(敏感性:0.78;特异性:0.84;AUC:0.87),而测试时间不到 CASI 的四分之一,是 MoCA 的一半。HAI-SAC 在区分 AD 的认知状态方面具有良好的心理测量特性、经济高效且敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad4f/9836308/9203e83b16d5/pone.0280178.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验